Linear Versus Models in Item Response Theory

A broad framework for examining the class of unidimensional and multidimensional models for item responses is provided by nonlinear factor analysis, with a classification of models as strictly linear, linear in their coefficients, or strictly nonlinear. These groups of models are compared and constrasted with respect to the associated problems of estimation, testing fit, and scoring an examinee. The invariance of item parameters is related to the congruence of common factors in linear theory.

[1]  Cyril Burt,et al.  THE FACTORIAL STUDY OF TEMPERAMENTAL TRAITS , 1948 .

[2]  R P McDonald,et al.  The Structural Analysis Of Multivariate Data: A Sketch Of A General Theory. , 1979, Multivariate behavioral research.

[3]  Roderick P. McDonald,et al.  The dimensionality of tests and items , 1981 .

[4]  Robert L. Linn,et al.  The Rasch Model, Objective Measurement, Equating, and Robustness , 1979 .

[5]  E. J. Burr,et al.  A comparison of four methods of constructing factor scores , 1967 .

[6]  R. Mcdonald A GENERALIZED COMMON FACTOR ANALYSIS BASED ON RESIDUAL COVARIANCE MATRICES OF PRESCRIBED STRUCTURE , 1969 .

[7]  B. Muthén Contributions to factor analysis of dichotomous variables , 1978 .

[8]  B. Wright,et al.  Best test design , 1979 .

[9]  Roderick P. McDonald,et al.  DIFFICULTY FACTORS IN BINARY DATA , 1974 .

[10]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[11]  J. Neyman,et al.  Consistent Estimates Based on Partially Consistent Observations , 1948 .

[12]  H. Kestelman,et al.  THE FUNDAMENTAL EQUATION OF FACTOR ANALYSIS , 1952 .

[13]  S. Mulaik,et al.  Foundations of Factor Analysis , 1975 .

[14]  R. P. McDonald Factor interaction in nonlinear factor analysis. , 1967, The British journal of mathematical and statistical psychology.

[15]  R. P. McDonald,et al.  The simultaneous estimation of factor loadings and scores , 1979 .

[16]  D. Lawley,et al.  XIV.—Further Investigations in Factor Estimation , 1942, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[17]  R. P. McDonald,et al.  A simple comprehensive model for the analysis of covariance structures: Some remarks on applications , 1980 .

[18]  William R. Krane,et al.  A Monte Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test , 1979 .

[19]  Louis Guttman,et al.  THE DETERMINACY OF FACTOR SCORE MATRICES WITH IMPLICATIONS FOR FIVE OTHER BASIC PROBLEMS OF COMMON‐FACTOR THEORY1 , 1955 .

[20]  R. Mcdonald DIFFICULTY FACTORS AND NON-LINEAR FACTOR ANALYSIS. , 1965, The British journal of mathematical and statistical psychology.

[21]  Anders Christoffersson,et al.  Factor analysis of dichotomized variables , 1975 .

[22]  R. P. McDonald,et al.  A second generation nonlinear factor analysis , 1983 .

[23]  Frederic M. Lord,et al.  Estimation of latent ability and item parameters when there are omitted responses , 1974 .

[24]  F. Lord A theory of test scores. , 1952 .

[25]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[26]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[27]  John Hattie,et al.  Decision Criteria for Determining Unidimensionality , 1981 .

[28]  L. Tucker An inter-battery method of factor analysis , 1958 .

[29]  F. Krauss Latent Structure Analysis , 1980 .

[30]  R. Darrell Bock,et al.  Fitting a response model forn dichotomously scored items , 1970 .

[31]  R. Mcdonald A note on the derivation of the general latent class model , 1962 .

[32]  K. Dunlap THE HIPP CHRONOSCOPE WITHOUT ARMATURE SPRINGS , 1912 .

[33]  D. Lawley,et al.  XXIII.—On Problems connected with Item Selection and Test Construction , 1943, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[34]  Roderick P. McDonald NUMERICAL METHODS FOR POLYNOMIAL MODELS IN NONLINEAR FACTOR ANALYSIS , 1967 .

[35]  R. McDonald,et al.  A note on local identifiability and degrees of freedom in the asymptotic likelihood ratio test , 1977 .

[36]  D. Lawley VI.—The Estimation of Factor Loadings by the Method of Maximum Likelihood , 1940 .

[37]  K. Jöreskog Some contributions to maximum likelihood factor analysis , 1967 .