Predictive and mechanistic multivariate linear regression models for reaction development

The utilization of physical organic molecular descriptors for the quantitative description of reaction outcomes in multivariate linear regression models is demonstrated as an effective tool for a priori prediction and mechanistic interrogation.

[1]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[2]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[3]  Matthew S Sigman,et al.  Predicting and optimizing asymmetric catalyst performance using the principles of experimental design and steric parameters , 2011, Proceedings of the National Academy of Sciences.

[4]  Kevin Wu,et al.  Parameterization of phosphine ligands demonstrates enhancement of nickel catalysis via remote steric effects. , 2017, Nature chemistry.

[5]  Per-Ola Norrby,et al.  Prediction of Stereochemistry using Q2MM , 2016, Accounts of chemical research.

[6]  S. Nolan,et al.  Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. , 2010, Chemical communications.

[7]  Neil Salkind Encyclopedia of Measurement and Statistics , 2006 .

[8]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[9]  Ke Chen,et al.  Total synthesis of eudesmane terpenes by site-selective C–H oxidations , 2009, Nature.

[10]  Anat Milo,et al.  Interrogating selectivity in catalysis using molecular vibrations , 2014, Nature.

[11]  I. Jolliffe Principal Component Analysis and Factor Analysis , 1986 .

[12]  F. Dean Toste,et al.  A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis , 2015, Science.

[13]  Anat Milo,et al.  The Development of Multidimensional Analysis Tools for Asymmetric Catalysis and Beyond. , 2016, Accounts of chemical research.

[14]  Huifeng Yue,et al.  Correlating the effects of the N-substituent sizes of chiral 1,2-amino phosphinamide ligands on enantioselectivities in catalytic asymmetric Henry reaction using physical steric parameters. , 2014, The Journal of organic chemistry.

[15]  Chun Zhang,et al.  Enantioselective Dehydrogenative Heck Arylations of Trisubstituted Alkenes with Indoles to Construct Quaternary Stereocenters. , 2015, Journal of the American Chemical Society.

[16]  F. Dean Toste,et al.  Pursuit of Noncovalent Interactions for Strategic Site-Selective Catalysis. , 2017, Accounts of chemical research.

[17]  Stefan Rüping,et al.  Learning interpretable models , 2006 .

[18]  Lucila Ohno-Machado,et al.  Logistic regression and artificial neural network classification models: a methodology review , 2002, J. Biomed. Informatics.

[19]  Jeremy N. Harvey,et al.  Computational descriptors for chelating P,P- and P,N-donor ligands , 2008 .

[20]  Andrew J. Neel,et al.  Enantiodivergent Fluorination of Allylic Alcohols: Data Set Design Reveals Structural Interplay between Achiral Directing Group and Chiral Anion. , 2016, Journal of the American Chemical Society.

[21]  P. Knauf,et al.  Monthly publication in 1986 , 1985 .

[22]  Bin Shen,et al.  QSAR analysis of the catalytic asymmetric ethylation of ketone using physical steric parameters of chiral ligand substituents , 2014 .

[23]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[24]  Eric N. Jacobsen,et al.  Attractive noncovalent interactions in asymmetric catalysis: Links between enzymes and small molecule catalysts , 2010, Proceedings of the National Academy of Sciences.

[25]  Vidar R. Jensen,et al.  Quantitative Structure−Activity Relationships of Ruthenium Catalysts for Olefin Metathesis , 2006 .

[26]  Robert J Deeth,et al.  Is enantioselectivity predictable in asymmetric catalysis? , 2009, Angewandte Chemie.

[27]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[28]  A. Afifi,et al.  Comparison of Stopping Rules in Forward “Stepwise” Regression , 1977 .

[29]  Ivana Matanovic,et al.  Predicting Electrocatalytic Properties: Modeling Structure-Activity Relationships of Nitroxyl Radicals. , 2015, Journal of the American Chemical Society.

[30]  C. Copéret,et al.  Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors , 2017, ACS central science.

[31]  M. Charton,et al.  Steric effects. I. Esterification and acid-catalyzed hydrolysis of esters , 1975 .

[32]  I. Jolliffe Principal Component Analysis , 2002 .

[33]  Donald W. Marquardt,et al.  Comment: You Should Standardize the Predictor Variables in Your Regression Models , 1980 .

[34]  Dominique M. Roberge,et al.  An Integrated Approach Combining Reaction Engineering and Design of Experiments for Optimizing Reactions , 2004 .

[35]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[36]  Matthew S. Sigman,et al.  Developing Comprehensive Computational Parameter Sets To Describe the Performance of Pyridine-Oxazoline and Related Ligands , 2017 .

[37]  Anat Milo,et al.  Parameterization of phosphine ligands reveals mechanistic pathways and predicts reaction outcomes , 2016, Nature Chemistry.

[38]  S. Wold Validation of QSAR's , 1991 .

[39]  Paul Ha-Yeon Cheong,et al.  Computational prediction of small-molecule catalysts , 2008, Nature.

[40]  W. A. Mueller,et al.  THE INFRARED CARBONYL STRETCHING BANDS OF RING SUBSTITUTED ACETOPHENONES , 1957 .

[41]  Bing Li,et al.  Chemistry informer libraries: a chemoinformatics enabled approach to evaluate and advance synthetic methods† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc04751j , 2016, Chemical science.

[42]  C. A. Tolman,et al.  Steric effects of phosphorus ligands in organometallic chemistry and homogeneous catalysis , 1977 .

[43]  L. Hammett,et al.  Some Relations between Reaction Rates and Equilibrium Constants. , 1935 .

[44]  Leonardo Belpassi,et al.  13 C NMR Spectroscopy of N-Heterocyclic Carbenes Can Selectively Probe σ Donation in Gold(I) Complexes. , 2017, Chemistry.

[45]  S. Winstein,et al.  Neighboring Carbon and Hydrogen. XIX. t-Butylcyclohexyl Derivatives. Quantitative Conformational Analysis , 1955 .

[46]  Roberto Todeschini,et al.  Handbook of Molecular Descriptors , 2002 .

[47]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[48]  M. White,et al.  Catalyst-controlled aliphatic C-H oxidations with a predictive model for site-selectivity. , 2013, Journal of the American Chemical Society.

[49]  L. Hammett,et al.  Linear free energy relationships in rate and equilibrium phenomena , 1938 .

[50]  Steven E. Wheeler,et al.  Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. , 2008, Journal of the American Chemical Society.

[51]  Svante Wold,et al.  Multivariate quantitative structure-activity relationships (QSAR): conditions for their applicability , 1983, J. Chem. Inf. Comput. Sci..

[52]  Manfred T Reetz,et al.  New methods for the high-throughput screening of enantioselective catalysts and biocatalysts. , 2002, Angewandte Chemie.

[53]  D. Mcdaniel,et al.  An Extended Table of Hammett Substitutent Constants Based on the Ionization of Substituted Benzoic Acids , 1958 .

[54]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[55]  Christopher M. Hadad,et al.  Comparison of different atomic charge schemes for predicting pKa variations in substituted anilines and phenols , 2002 .

[56]  Hua Zong,et al.  Constructing a quantitative correlation between N-substituent sizes of chiral ligands and enantioselectivities in asymmetric addition reactions of diethylzinc with benzaldehyde. , 2012, The Journal of organic chemistry.

[57]  Gadi Rothenberg,et al.  Ligand Descriptor Analysis in Nickel‐Catalysed Hydrocyanation: A Combined Experimental and Theoretical Study , 2005 .

[58]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[59]  L. Hammett The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives , 1937 .

[60]  Christophe Copéret,et al.  Exploiting and Understanding the Selectivity of Ru-N-Heterocyclic Carbene Metathesis Catalysts for the Ethenolysis of Cyclic Olefins to α,ω-Dienes. , 2017, Journal of the American Chemical Society.

[61]  Scott J. Miller,et al.  Linear free-energy relationship analysis of a catalytic desymmetrization reaction of a diarylmethane-bis(phenol). , 2010, Organic letters.

[62]  Biserka Kojić-Prodić,et al.  A quantitative model for predicting enzyme enantioselectivity: application to Burkholderia cepacia lipase and 3-(aryloxy)-1,2-propanediol derivatives. , 2002, Journal of molecular graphics & modelling.

[63]  Christophe Copéret,et al.  Quantitatively analyzing metathesis catalyst activity and structural features in silica-supported tungsten imido-alkylidene complexes. , 2015, Journal of the American Chemical Society.

[64]  Y Inoue,et al.  [High-resolution nuclear magnetic resonance]. , 1967, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[65]  David J Nelson,et al.  Quantifying and understanding the steric properties of N-heterocyclic carbenes. , 2017, Chemical communications.

[66]  Jochen Autschbach,et al.  Scalar Relativistic Computations and Localized Orbital Analyses of Nuclear Hyperfine Coupling and Paramagnetic NMR Chemical Shifts. , 2012, Journal of chemical theory and computation.

[67]  Márcia M. C. Ferreira,et al.  Is your QSAR/QSPR descriptor real or trash? , 2010 .

[68]  Zhi-Min Chen,et al.  Palladium-Catalyzed Enantioselective Redox-Relay Heck Arylation of 1,1-Disubstituted Homoallylic Alcohols. , 2016, Journal of the American Chemical Society.

[69]  J. Dearden,et al.  QSAR modeling: where have you been? Where are you going to? , 2014, Journal of medicinal chemistry.

[70]  Anat Milo,et al.  Developing a Modern Approach To Account for Steric Effects in Hammett-Type Correlations. , 2016, Journal of the American Chemical Society.

[71]  J. D. Sherman,et al.  Generalizability of an Organizational Commitment Model , 1981 .

[72]  John F. Hartwig,et al.  A Simple, Multidimensional Approach to High-Throughput Discovery of Catalytic Reactions , 2011, Science.

[73]  Isao Ando,et al.  Chemical shift tensor - the heart of NMR: Insights into biological aspects of proteins. , 2010, Progress in nuclear magnetic resonance spectroscopy.

[74]  Frank Glorius,et al.  Contemporary screening approaches to reaction discovery and development. , 2014, Nature chemistry.

[75]  C. Hansch,et al.  A NEW SUBSTITUENT CONSTANT, PI, DERIVED FROM PARTITION COEFFICIENTS , 1964 .

[76]  Eiji Yamamoto,et al.  Mechanistic Investigations of the Pd(0)-Catalyzed Enantioselective 1,1-Diarylation of Benzyl Acrylates. , 2017, Journal of the American Chemical Society.

[77]  Matthew S Sigman,et al.  Multidimensional steric parameters in the analysis of asymmetric catalytic reactions. , 2012, Nature chemistry.

[78]  J V Tu,et al.  Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. , 1996, Journal of clinical epidemiology.

[79]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[80]  Matthew S Sigman,et al.  Parametrization of Non-covalent Interactions for Transition State Interrogation Applied to Asymmetric Catalysis. , 2017, Journal of the American Chemical Society.

[81]  Pavel Polishchuk,et al.  Interpretation of Quantitative Structure-Activity Relationship Models: Past, Present, and Future , 2017, J. Chem. Inf. Model..

[82]  Christophe Copéret,et al.  Orbital Analysis of Carbon-13 Chemical Shift Tensors Reveals Patterns to Distinguish Fischer and Schrock Carbenes. , 2017, Angewandte Chemie.

[83]  Neil K Garg,et al.  Computational predictions of substituted benzyne and indolyne regioselectivities. , 2015, Tetrahedron letters.

[84]  Robert D Clark,et al.  Neighborhood behavior: a useful concept for validation of "molecular diversity" descriptors. , 1996, Journal of medicinal chemistry.

[85]  M. S. Khots,et al.  D-optimal designs , 1995 .

[86]  Matthew S Sigman,et al.  Inverting Conventional Chemoselectivity in Pd-Catalyzed Amine Arylations with Multiply Halogenated Pyridines. , 2017, Journal of the American Chemical Society.

[87]  Robert W. Taft,et al.  Linear Free Energy Relationships from Rates of Esterification and Hydrolysis of Aliphatic and Ortho-substituted Benzoate Esters , 1952 .

[88]  Jochen Autschbach,et al.  Analyzing Pt chemical shifts calculated from relativistic density functional theory using localized orbitals: The role of Pt 5d lone pairs , 2008, Magnetic resonance in chemistry : MRC.

[89]  Robert S. Paton,et al.  Correlating Reactivity and Selectivity to Cyclopentadienyl Ligand Properties in Rh(III)-Catalyzed C-H Activation Reactions: An Experimental and Computational Study. , 2017, Journal of the American Chemical Society.

[90]  Per-Ola Norrby,et al.  Prediction of enantioselectivity in rhodium catalyzed hydrogenations. , 2009, Journal of the American Chemical Society.

[91]  K. Lipkowitz,et al.  Using stereocartography for predicting efficacy of stereoinduction by chiral catalysts. , 2003, Chirality.

[92]  Marcus O'Connor,et al.  Artificial neural network models for forecasting and decision making , 1994 .

[93]  D. Hoekman Exploring QSAR Fundamentals and Applications in Chemistry and Biology, Volume 1. Hydrophobic, Electronic and Steric Constants, Volume 2 J. Am. Chem. Soc. 1995, 117, 9782 , 1996 .

[94]  E. N. Bess,et al.  Designer substrate library for quantitative, predictive modeling of reaction performance , 2014, Proceedings of the National Academy of Sciences.

[95]  M. Karelson,et al.  QSPR: the correlation and quantitative prediction of chemical and physical properties from structure , 1995 .

[96]  J. Facelli Chemical shift tensors: theory and application to molecular structural problems. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[97]  Shane W. Krska,et al.  Cobalt Precursors for High-Throughput Discovery of Base Metal Asymmetric Alkene Hydrogenation Catalysts , 2013, Science.

[98]  Gadi Rothenberg,et al.  Predictive modeling in homogeneous catalysis: a tutorial. , 2010, Chemical Society reviews.

[99]  M. Sigman,et al.  Three-Dimensional Correlation of Steric and Electronic Free Energy Relationships Guides Asymmetric Propargylation , 2011, Science.

[100]  H. H. Jaffé,et al.  A Reëxamination of the Hammett Equation. , 1953 .

[101]  Gadi Rothenberg,et al.  Design and assembly of virtual homogeneous catalyst libraries - towards in silico catalyst optimisation , 2006 .

[102]  S. L. Dixon,et al.  Quantum mechanical models correlating structure with selectivity: predicting the enantioselectivity of beta-amino alcohol catalysts in aldehyde alkylation. , 2003, Journal of the American Chemical Society.

[103]  Stéphanie Halbert,et al.  Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts. , 2016, Journal of the American Chemical Society.

[104]  Vittorio Scarano,et al.  SambVca: A Web Application for the Calculation of the Buried Volume of N‐Heterocyclic Carbene Ligands , 2009 .

[105]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[106]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[107]  Gadi Rothenberg,et al.  Combinatorial explosion in homogeneous catalysis: Screening 60,000 cross-coupling reactions , 2004 .

[108]  Christopher M. Hadad,et al.  Substituent effects on the electronic structure and pKa of benzoic acid , 2002 .

[109]  Alexander Golbraikh,et al.  Data Set Modelability by QSAR , 2014, J. Chem. Inf. Model..

[110]  Huw M. L. Davies,et al.  Using IR vibrations to quantitatively describe and predict site-selectivity in multivariate Rh-catalyzed C–H functionalization† †Electronic supplementary information (ESI) available: Experimental procedures, tabulated descriptors, and model development MATLAB commands. See DOI: 10.1039/c5sc00357a , 2015, Chemical science.

[111]  Yang Liu,et al.  Study on the Catalytic Behavior of Bifunctional Hydrogen-Bonding Catalysts Guided by Free Energy Relationship Analysis of Steric Parameters. , 2017, Chemistry.

[112]  J. Habbema,et al.  Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. , 2001, Journal of clinical epidemiology.

[113]  Luigi Cavallo,et al.  A Combined Experimental and Theoretical Study Examining the Binding of N-Heterocyclic Carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) Moiety: Insight into Stereoelectronic Differences between Unsaturated and Saturated NHC Ligands , 2003 .

[114]  L. Cavallo,et al.  SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps , 2016 .

[115]  Jochen Autschbach,et al.  Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals. , 2008, The Journal of chemical physics.

[116]  J. Reek,et al.  Ligand Bite Angle Effects in Metal-catalyzed C-C Bond Formation. , 2000, Chemical reviews.

[117]  R. Carlson,et al.  Design and optimization in organic synthesis , 1991 .

[118]  Brian D. Ripley,et al.  Regression techniques for the detection of analytical bias , 1987 .

[119]  Derek Hudson,et al.  Ligand-selection rules in the classical zinc finger motif , 1991 .

[120]  E. Jacobsen,et al.  The Mechanistic Basis for Electronic Effects on Enantioselectivity in the (salen)Mn(III)-Catalyzed Epoxidation Reaction , 1998 .

[121]  James C Spall,et al.  Factorial Design for Efficient Experimentation , 2010, IEEE Control Systems.

[122]  Zoran Bursac,et al.  Purposeful selection of variables in logistic regression , 2008, Source Code for Biology and Medicine.

[123]  Davide Ballabio,et al.  Evaluation of model predictive ability by external validation techniques , 2010 .

[124]  David P Hickey,et al.  Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. , 2017, Journal of the American Chemical Society.

[125]  F. Dean Toste,et al.  Exploiting non-covalent π interactions for catalyst design , 2017, Nature.