Piecewise Continuous Toeplitz Matrices and Operators: Slow Approach to Infinity
暂无分享,去创建一个
[1] Frank Spitzer,et al. The Toeplitz Matrices of an Arbitrary Laurent Polynomial. , 1960 .
[2] Harold Widom. Eigenvalue Distribution for Nonselfadjoint Toeplitz Matrices , 1994 .
[3] L. Trefethen,et al. Eigenvalues and pseudo-eigenvalues of Toeplitz matrices , 1992 .
[4] Paolo Tilli,et al. Some Results on Complex Toeplitz Eigenvalues , 1999 .
[5] Bernd Silbermann,et al. Toeplitz Operators and Determinants Generated by Symbols with One Fisher‐Hartwig Singularity , 1986 .
[6] A. Böttcher,et al. Introduction to Large Truncated Toeplitz Matrices , 1998 .
[7] Sergei M. Grudsky,et al. Toeplitz band matrices with exponentially growing condition numbers , 1999 .
[8] A. Böttcher. Pseudospectra and Singular Values of Large Convolution Operators , 1994 .
[9] E. E. Tyrtyshnikov,et al. Singular values of Cauchy-Toeplitz matrices , 1992 .
[10] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[11] L. Trefethen,et al. Spectra, pseudospectra, and localization for random bidiagonal matrices , 2000, cond-mat/0003514.
[12] Nelson,et al. Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.
[13] Kent E. Morrison,et al. The Fisher-Hartwig conjecture and Toeplitz eigenvalues , 1994 .
[14] H. Landau,et al. On Szegö’s eingenvalue distribution theorem and non-Hermitian kernels , 1975 .