The relationship between structure and specificity in the plant nitrilases

..................................................................................... 5 List of abbreviations...................................................................... 6 0.1 Introduction........................................................................... 10 0.1.1 Nitrilases..................................................................... 10 0.1.2 Industrial considerations................................................... 10 0.1.3 Structural biology of nitrilases............................................ 11 0.1.4 Physiological role of nitrilases............................................ 13 0.1.5 Aims.......................................................................... 15 0.2 Materials and methods............................................................... 16 0.2.1 Homology modelling....................................................... 16 0.2.2 Molecular biology........................................................... 16 0.2.2.1 Overlap extension PCR.......................................... 16 0.2.2.2 Site-directed mutagenesis....................................... 17 0.2.2.3 Transformation and sequencing................................. 19 0.2.3 Protein expression and purification for activity assays.................. 20 0.2.4 Protein expression and purification for electron microscopy........... 21 0.2.5 SDS-PAGE.................................................................... 22 0.2.6 Bradford assay................................................................ 22 0.2.7 Specific activity measurement............................................. 23 0.2.8 Photometric detection of free ammonia................................... 24 0.2.9 Negative-stain electron microscopy........................................ 25 0.2.10 Helical image processing.................................................. 25 0.2.11 Helical reconstruction...................................................... 25 0.2.12 Single-particle image processing......................................... 27 0.2.13 Single-particle reconstruction............................................. 27 0.2.14 Resolution estimation...................................................... 28 0.2.15 Data visualisation.......................................................... 28 0.2.16 Mutant list................................................................... 28 Un ive rsi ty of Ca pe To wn 
 8
 SECTION 1: Substrate specificity: modifying preferred substrate size and chemistry 1.1 Introduction.......................................................... 29 1.1.1 Interface formation............................................. 29 1.1.2 Substrate specificity........................................... 30 1.1.3 Aims............................................................. 32 1.1.4 Brief summary of findings.................................... 33 1.2 Results................................................................. 34 1.2.1 Interface disruption............................................ 34 1.2.2 The position of the substrate within the binding pocket.. 35 1.2.3 The role of quaternary structure.............................. 36 1.2.4 Nitrilase helical reconstruction............................... 36 1.2.5 Substrate size vs. helical twist................................ 39 1.2.6 Exchanging the helical twist.................................. 39 1.2.7 Interface formation and specificity.......................... 46 1.2.8 Active-site pocket mutations.................................. 47 1.2.9 Nitrilase 4 β-cyanoalanine binding........................... 53 1.3 Discussion............................................................. 56 1.3.1 Substrate specificity........................................... 56 1.3.2 Methodology................................................... 57 1.3.2.1 Helical reconstruction.................................. 57 1.3.2.2 Specific activity measurement........................ 57 1.3.3 Active site pocket specificity determinants................ 58 1.3.4 Interface disruption and inactivation........................ 59 SECTION 2: Amide/ acid ratio: reaction mechanism and modifying product ratio 2.1 Introduction.......................................................... 61 2.1.1 Mechanism...................................................... 61 2.1.2 Electronic effects............................................... 62 2.1.3 Amide:acid ratio of nitrilase enzymes...................... 63 2.1.4 Aims............................................................. 64 2.1.5 Brief summary of findings.................................... 64 Un ive rsi ty of Ca pe To wn 
 9
 2.2 Results................................................................. 66 2.2.1 Nitrilase active site............................................. 66 2.2.2 The unbound enzyme state.................................... 66 2.2.3 Tetrahedral intermediate state................................ 67 2.2.4 The nitrilase reaction model.................................. 67 2.2.5 Determinants of nitrilase amide:acid product ratio........ 72 2.2.6 S. alba NIT1c and S. arvensis NIT1c: effect of tyrosine. 72 2.2.7 Amide: acid ratio in nitrilase 4: effect of arg/lys.......... 74 2.3 Discussion............................................................. 76 2.3.1 Mechanism modelling......................................... 76 2.3.2 Determinants of nitrilase activity............................ 77 2.3.3 Nitrilase mechanism........................................... 78 2.3.4 Nitrilase mechanism: amide formation..................... 79 Conclusions and future work............................................................ 82 References.................................................................................... 85 Appendix..................................................................................... 96

[1]  M. Kobayashi,et al.  Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. , 1998, Biochemical and biophysical research communications.

[2]  B. Sewell,et al.  The cyanide degrading nitrilase from Pseudomonas stutzeri AK61 is a two-fold symmetric, 14-subunit spiral. , 2003, Structure.

[3]  B. Sewell,et al.  Helical structure of unidirectionally shadowed metal replicas of cyanide hydratase from Gloeocercospora sorghi. , 2008, Journal of structural biology.

[4]  H. Yamada,et al.  Nitrilase of Rhodococcus rhodochrous J1. Purification and characterization. , 1989, European journal of biochemistry.

[5]  A. Stolz,et al.  Construction and Application of Variants of the Pseudomonas fluorescens EBC191 Arylacetonitrilase for Increased Production of Acids or Amides , 2010, Applied and Environmental Microbiology.

[6]  W. Bullock XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. , 1987 .

[7]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[8]  Dunming Zhu,et al.  Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. , 2007, Journal of biotechnology.

[9]  N. Volkmann,et al.  Quantitative fitting of atomic models into observed densities derived by electron microscopy. , 1999, Journal of structural biology.

[10]  K. Yamamoto,et al.  Production of S-(+)-ibuprofen from a nitrile compound by Acinetobacter sp. strain AK226 , 1990, Applied and environmental microbiology.

[11]  Laurent Joyeux,et al.  Efficiency of 2D alignment methods. , 2002, Ultramicroscopy.

[12]  Ludmila Martínková,et al.  Genome mining for the discovery of new nitrilases in filamentous fungi , 2011, Biotechnology Letters.

[13]  P. Rudolph,et al.  Simultaneous introduction of multiple mutations using overlap extension PCR. , 1997, BioTechniques.

[14]  B. Sewell,et al.  The quaternary structure of the amidase from Geobacillus pallidus RAPc8 is revealed by its crystal packing. , 2006, Acta crystallographica. Section F, Structural biology and crystallization communications.

[15]  H. Wajant,et al.  Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. , 2002, European journal of biochemistry.

[16]  B. Matthews,et al.  Accurate calculation of the density of proteins. , 2000, Acta crystallographica. Section D, Biological crystallography.

[17]  O. Benada,et al.  Purification and characterization of a nitrilase from Fusarium solani O1 , 2008 .

[18]  C. Vorgias,et al.  Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. , 2006, Protein expression and purification.

[19]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[20]  M. Burk,et al.  Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). , 2003, Journal of the American Chemical Society.

[21]  F. Effenberger,et al.  Selective Hydrolysis of Aliphatic Dinitriles to Monocarboxylic Acids by a Nitrilase from Arabidopsis thaliana , 2001 .

[22]  H. Yamada,et al.  Purification and characterization of a novel nitrilase of Rhodococcus rhodochrous K22 that acts on aliphatic nitriles , 1990, Journal of bacteriology.

[23]  Roger A. Sheldon,et al.  Nitrile Hydratase Activity of a Recombinant Nitrilase , 2006 .

[24]  B. Sewell,et al.  Structural and biochemical characterization of a nitrilase from the thermophilic bacterium, Geobacillus pallidus RAPc8 , 2010, Applied Microbiology and Biotechnology.

[25]  P. Pauwels,et al.  A modified overlap extension PCR method to create chimeric genes in the absence of restriction enzymes , 1998 .

[26]  Richard C. Willson,et al.  Genome mining of cyanide-degrading nitrilases from filamentous fungi , 2008, Applied Microbiology and Biotechnology.

[27]  R. Sheldon,et al.  Characterisation of nitrilase and nitrile hydratase biocatalytic systems , 2004, Applied Microbiology and Biotechnology.

[28]  P. Harnedy,et al.  The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. , 2003, FEMS microbiology letters.

[29]  K. Struhl,et al.  Current Protocols in Molecular Biology (New York: Greene Publishing Associates and Wiley-Interscience). Host-Range Shuttle System for Gene Insertion into the Chromosomes of Gram-negative Bacteria. , 1988 .

[30]  B. Sewell,et al.  Microbial nitrilases: versatile, spiral forming, industrial enzymes , 2009, Journal of applied microbiology.

[31]  Paul E. Swanson,et al.  Rapid Evolution of Reversible Denaturation and Elevated Melting Temperature in a Microbial Haloalkane Dehalogenase , 2001 .

[32]  W. G. Robinson,et al.  RICININE NITRILASE. II. PURIFICATION AND PROPERTIES. , 1964, The Journal of biological chemistry.

[33]  J Frank,et al.  Three-dimensional reconstruction of single particles embedded in ice. , 1992, Ultramicroscopy.

[34]  B. Sewell,et al.  The cyanide hydratase from Neurospora crassa forms a helix which has a dimeric repeat , 2009, Applied Microbiology and Biotechnology.

[35]  Y. Ikenaka,et al.  Crystal structure of N-carbamyl-D-amino acid amidohydrolase with a novel catalytic framework common to amidohydrolases. , 2000, Structure.

[36]  M. Piotrowski,et al.  Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis. , 2007, Journal of experimental botany.

[37]  Ying Wei,et al.  Prediction of active sites for protein structures from computed chemical properties , 2005, ISMB.

[38]  A. Banerjee,et al.  The nitrile-degrading enzymes: current status and future prospects. , 2002, Applied microbiology and biotechnology.

[39]  T. Ishikawa,et al.  Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. , 2007, Molecular plant pathology.

[40]  V. Křen,et al.  Nitrile- and Amide-converting Microbial Enzymes: Stereo-, Regio- and Chemoselectivity , 2002 .

[41]  Gregory A. Grothaus,et al.  A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules , 2006, Proteins.

[42]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[43]  M. Jeya,et al.  Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5 , 2009, Applied Microbiology and Biotechnology.

[44]  K. Thimann,et al.  NITRILASE. II. SUBSTRATE SPECIFICITY AND POSSIBLE MODE OF ACTION. , 1964, Archives of biochemistry and biophysics.

[45]  T. Bhalla,et al.  Asymmetric hydrolysis of α-aminonitriles to optically active amino acids by a nitrilase of Rhodococcus rhodochrous PA-34 , 1992, Applied Microbiology and Biotechnology.

[46]  A. Stolz,et al.  Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. , 2007, Protein engineering, design & selection : PEDS.

[47]  David Weiner,et al.  An enzyme library approach to biocatalysis: development of nitrilases for enantioselective production of carboxylic acid derivatives. , 2002, Journal of the American Chemical Society.

[48]  J. Short Recombinant approaches for accessing biodiversity. , 1997, Nature biotechnology.

[49]  M. Piotrowski,et al.  The Arabidopsis thaliana Isogene NIT4 and Its Orthologs in Tobacco Encode β-Cyano-l-alanine Hydratase/Nitrilase* , 2001, The Journal of Biological Chemistry.