Polymer design for high temperature shape memory: Low crosslink density polyimides

Abstract Shape memory in polymers is a process whereby mechanical energy is microscopically stored, and reversibly recovered within the polymer. Consideration of the viscoelastic and glassy dynamics necessary for each step of the process reveals key molecular characteristics that may improve performance, including a rigid polymer backbone with narrow molecular weight distribution between a low fraction of crosslinks. With this insight to guide high temperature polymer design, aromatic CP2 polyimide and associated single wall carbon nanotube (SWNTs) nanocomposites are shown to have excellent shape memory performance at 220 °C with rapid recovery ( 98%), good cyclability and outstanding creep resistance. A narrow glass transition temperature regime (

[1]  John Robertson,et al.  In situ Raman spectro-electrochemistry study of single-wall carbon nanotube mat , 2004 .

[2]  J. H. Gibbs,et al.  Nature of the Glass Transition and the Glassy State , 1958 .

[3]  Richard A. Vaia,et al.  Deformation–morphology correlations in electrically conductive carbon nanotube—thermoplastic polyurethane nanocomposites , 2005 .

[4]  B. Yakobson,et al.  Carbon Nanotubes: Supramolecular Mechanics , 2014 .

[5]  E. Guth Theory of Filler Reinforcement , 1945 .

[6]  M. Lake,et al.  Shape memory polymer nanocomposites , 2002 .

[7]  C. Feger,et al.  Properties of partially cured networks. 2. The glass transition , 1985 .

[8]  Richard A. Vaia,et al.  Dielectric characteristics of polyimide CP2 , 2010 .

[9]  Chunmiao Han,et al.  Organic‐montmorillonite modified shape memory epoxy composite , 2011 .

[10]  Y. Ohya,et al.  Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release. , 2009, Biomacromolecules.

[11]  Mujahid Abdulrahim,et al.  Flight Characteristics of Shaping the Membrane Wing of a Micro Air Vehicle , 2005 .

[12]  Warren P. Mason,et al.  Introduction to polymer viscoelasticity , 1972 .

[13]  L. Sperling Introduction to physical polymer science , 1986 .

[14]  Thao D. Nguyen,et al.  Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers , 2008 .

[15]  Byung Kyu Kim,et al.  Miscibility and shape memory effect of thermoplastic polyurethane blends with phenoxy resin , 2001 .

[16]  K. Graff Wave Motion in Elastic Solids , 1975 .

[17]  B. Grady Carbon Nanotube-Polymer Composites: Manufacture, Properties, and Applications , 2011 .

[18]  D. Ratna,et al.  Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide) , 2011 .

[19]  M. Vanlandingham,et al.  Multiscale Creep Compliance of Epoxy Networks at Elevated Temperatures , 2007 .

[20]  P. Mather,et al.  Shape Memory Polymer Research , 2009 .

[21]  A. Sokolov,et al.  Role of Chemical Structure in Fragility of Polymers: A Qualitative Picture , 2008 .

[22]  Ingrid A. Rousseau,et al.  Facile tailoring of thermal transition temperatures of epoxy shape memory polymers , 2009 .

[23]  R. Vaia,et al.  Photodriven, Flexural–Torsional Oscillation of Glassy Azobenzene Liquid Crystal Polymer Networks , 2011 .

[24]  J. R. Lin,et al.  Shape‐memorized crosslinked ester‐type polyurethane and its mechanical viscoelastic model , 1999 .

[25]  D. A. Thomas,et al.  Characterization of the area under loss modulus and tan δ–temperature curves: Acrylic polymers and their sequential interpenetrating polymer networks , 1987 .

[26]  Yiping Liu,et al.  Thermomechanics of shape memory polymer nanocomposites , 2004 .

[27]  R. Vaia,et al.  Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks , 2011 .

[28]  I Hamerton,et al.  Recent Developments in Epoxy Resins , 1997 .

[29]  J. Baek,et al.  Grafting of Vapor-Grown Carbon Nanofibers via in-Situ Polycondensation of 3-Phenoxybenzoic Acid in Poly(phosphoric acid) , 2004 .

[30]  Zbigniew Stachurski,et al.  Modeling shape memory effect in uncrosslinked amorphous biodegradable polymer , 2011 .

[31]  Hisaaki Tobushi,et al.  Thermomechanical properties in a thin film of shape memory polymer of polyurethane series , 1996 .

[32]  David H. Wang,et al.  Nanocomposites Derived from a Low-Color Aromatic Polyimide (CP2) and Amine-Functionalized Vapor-Grown Carbon Nanofibers: In Situ Polymerization and Characterization , 2007 .

[33]  T. Xie Recent advances in polymer shape memory , 2011 .

[34]  Hisaaki Tobushi,et al.  Thermomechanical constitutive model of shape memory polymer , 2001 .

[35]  Chunmiao Han,et al.  Thermal, mechanical and shape memory properties of shape memory epoxy resin , 2010 .

[36]  B. Ellis,et al.  The glass transition temperatures of highly crosslinked networks: Cured epoxy resins , 1982 .

[37]  Wei Xu,et al.  Thermomechanical behavior of thermoset shape memory polymer programmed by cold-compression: Testing and constitutive modeling , 2011 .

[38]  Yiping Liu,et al.  Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling , 2006 .

[39]  Xiaofan Luo,et al.  Triple‐Shape Polymeric Composites (TSPCs) , 2010 .

[40]  G. J. Monkman,et al.  Advances in shape memory polymer actuation , 2000 .

[41]  R. Langer,et al.  Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications , 2002, Science.

[42]  Feng-kui Li,et al.  Polyurethane/conducting carbon black composites: Structure, electric conductivity, strain recovery behavior, and their relationships , 2000 .

[43]  D. A. Thomas,et al.  Evaluation of the area under linear loss modulus‐temperature curves , 1991 .

[44]  Loon-Seng Tan,et al.  Electrothermal Polymer Nanocomposite Actuators , 2010, Advanced materials.

[45]  Qing-Qing Ni,et al.  Bending behavior of shape memory polymer based laminates , 2007 .

[46]  P. Bandaru,et al.  Improved mechanical properties of carbon nanotube/polymer composites through the use of carboxyl-epoxide functional group linkages , 2010 .

[47]  A. Bhattacharyya,et al.  Analysis of the isothermal mechanical response of a shape memory polymer rheological model , 2000 .

[48]  Pierre Gilormini,et al.  A torsion test for the study of the large deformation recovery of shape memory polymers , 2011 .

[49]  R. Vaia,et al.  Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers , 2004, Nature materials.

[50]  Andreas Lendlein,et al.  Characterization Methods for Shape-Memory Polymers , 2009 .

[51]  T. G. Fox,et al.  Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers , 1955 .

[52]  J. Ferry Viscoelastic properties of polymers , 1961 .

[53]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[54]  I. Rousseau Challenges of Shape Memory Polymers : A Review of the Progress Toward Overcoming SMP's Limitations , 2008 .

[55]  J. E. Mark,et al.  Physical properties of polymers handbook , 2007 .

[56]  T. Ware,et al.  High‐Strain Shape‐Memory Polymers , 2010 .

[57]  Polycarpos Pissis,et al.  Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites , 2005 .

[58]  U. Schubert,et al.  Mechanical, thermomechanical, and thermal properties of polystyrene crosslinked with a multifunctional zirconium oxo cluster , 2007 .

[59]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part II: A linearized model for small deformations , 2008 .

[60]  Hisaaki Tobushi,et al.  Thermomechanical Constitutive Modeling in Shape Memory Polymer of Polyurethane Series , 1997 .

[61]  K. Ueberreiter,et al.  Second-Order Transitions and Mesh Distribution Functions of Cross-Linked Polystyrenes , 1950 .

[62]  J. E. Mark,et al.  Physical Properties of Polymers: Index , 2004 .

[63]  Yifu Ding,et al.  Time and Temperature Dependent Recovery of Epoxy-Based Shape Memory Polymers , 2011 .

[64]  Liang Xue,et al.  Synthesis and Characterization of Three-Arm Poly(ε-caprolactone)-Based Poly(ester−urethanes) with Shape-Memory Effect at Body Temperature , 2009 .

[65]  W. Huang,et al.  Stimulus-responsive shape memory materials: A review , 2012 .

[66]  H. Wagner,et al.  Mechanical Properties of Functionalized Single‐Walled Carbon‐Nanotube/Poly(vinyl alcohol) Nanocomposites , 2005 .

[67]  Maria Victoria Biezma Moraleda,et al.  How much background in chemistry do material science and engineering students require , 2010 .

[68]  H. Leaderman,et al.  Physical properties of polymers , 1962 .

[69]  A. Lendlein,et al.  Multifunctional Shape‐Memory Polymers , 2010, Advanced materials.

[70]  M. Worzakowska Thermal and dynamic mechanical properties of IPNS formed from unsaturated polyester resin and epoxy polyester , 2009 .

[71]  Dimitris C. Lagoudas,et al.  A constitutive theory for shape memory polymers. Part I: Large deformations , 2008 .

[72]  Viscoelastic Behavior of Poly(methyl methacrylate) Networks with Different Cross-Linking Degrees , 2004 .

[73]  P. Mather,et al.  Shape memory effect exhibited by smectic-C liquid crystalline elastomers. , 2003, Journal of the American Chemical Society.

[74]  David L. McDowell,et al.  Thermo-mechanical behavior of epoxy shape memory polymer foams , 2007 .

[75]  F. Tsai,et al.  Shape memory effects of poly(ethylene terephthalate-co-ethylene succinate) random copolymers , 2008 .

[76]  Xingzhong Fang,et al.  Melt processable homo- and copolyimides with high thermo-oxidative stability as derived from mixed thioetherdiphthalic anhydride isomers , 2010 .

[77]  M. Irie Shape Memory Polymers , 1990 .

[78]  G. Papanicolaou,et al.  Effect of thermal shock cycling on the creep behavior of glass-epoxy composites , 2009 .

[79]  Ingrid A. Rousseau,et al.  Shape memory epoxy: Composition, structure, properties and shape memory performances , 2010 .

[80]  Richard W. Siegel,et al.  Glass transition behavior of alumina/polymethylmethacrylate nanocomposites , 2002 .

[81]  Patrick T. Mather,et al.  Chemically Cross-Linked Polycyclooctene: Synthesis, Characterization, and Shape Memory Behavior , 2002 .

[82]  W. W. Wright,et al.  Heat-resistant polymers , 1983 .