Donor strand exchange and conformational changes during E. coli fimbrial formation.

[1]  B. Kidd,et al.  Structural Basis for Mechanical Force Regulation of the Adhesin FimH via Finger Trap-like β Sheet Twisting , 2010, Cell.

[2]  G. Waksman,et al.  Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria , 2008, The EMBO journal.

[3]  R. Glockshuber,et al.  Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation. , 2008, Structure.

[4]  R. Glockshuber,et al.  Crystal structure of the ternary FimC–FimFt–FimDN complex indicates conserved pilus chaperone–subunit complex recognition by the usher FimD , 2008, FEBS letters.

[5]  R. Glockshuber,et al.  NMR structure of the Escherichia coli type 1 pilus subunit FimF and its interactions with other pilus subunits. , 2008, Journal of molecular biology.

[6]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[7]  G. Waksman,et al.  Crystal Structure of the P Pilus Rod Subunit PapA , 2007, PLoS pathogens.

[8]  J. Åqvist,et al.  Resolving the energy paradox of chaperone/usher-mediated fibre assembly. , 2005, The Biochemical journal.

[9]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[10]  Stefan D Knight,et al.  Structure and Biogenesis of the Capsular F1 Antigen from Yersinia pestis Preserved Folding Energy Drives Fiber Formation , 2003, Cell.

[11]  G. Waksman,et al.  Chaperone Priming of Pilus Subunits Facilitates a Topological Transition that Drives Fiber Formation , 2002, Cell.

[12]  G. Waksman,et al.  Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection , 2002, Molecular microbiology.

[13]  G. Waksman,et al.  PapD-like chaperones provide the missing information for folding of pilin proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  V. Stojanoff,et al.  X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. , 1999, Science.

[15]  D E McRee,et al.  XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. , 1999, Journal of structural biology.

[16]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .

[17]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[18]  A. Siitonen,et al.  Quantitative differences in adhesiveness of type 1 fimbriated Escherichia coli due to structural differences in fimH genes , 1995, Journal of bacteriology.

[19]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[20]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[21]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[22]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[23]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[24]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[25]  A. Brünger Assessment of phase accuracy by cross validation: the free R value. Methods and applications. , 1993, Acta crystallographica. Section D, Biological crystallography.

[26]  E. Adman,et al.  Structure and Function of Small Blue Copper Proteins , 1985 .