Oxidation mechanism of elemental mercury by HCl over MnO2 catalyst: Insights from first principles

[1]  Oa Us Epa Mercury and Air Toxics Standards (MATS) , 2015 .

[2]  F. Scala,et al.  Elemental mercury capture and oxidation by a regenerable manganese-based sorbent: The effect of gas composition , 2015 .

[3]  Z. S. Wei,et al.  Elemental mercury oxidation from flue gas by microwave catalytic oxidation over Mn/γ-Al2O3 , 2015 .

[4]  Ming Chang,et al.  Insights into the mechanism of heterogeneous mercury oxidation by HCl over V2O5/TiO2 catalyst: Periodic density functional theory study , 2015 .

[5]  Ming Chang,et al.  Theoretical study of mercury species adsorption mechanism on MnO2(1 1 0) surface , 2014 .

[6]  Ming Chang,et al.  Mercury oxidation mechanism on Pd(1 0 0) surface from first-principles calculations , 2014 .

[7]  H. Gutberlet,et al.  Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants , 2014 .

[8]  J. Wilcox,et al.  Role of WO3 in the Hg Oxidation across the V2O5–WO3–TiO2 SCR Catalyst: A DFT Study , 2013 .

[9]  J. Wilcox,et al.  Heterogeneous mercury oxidation on au(111) from first principles. , 2013, Environmental science & technology.

[10]  B. M. Reddy,et al.  Structural characterization and catalytic evaluation of transition and rare earth metal doped ceria-based solid solutions for elemental mercury oxidation , 2013 .

[11]  C. Snape,et al.  High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture , 2013 .

[12]  F. Scala,et al.  Characterization of a regenerable sorbent for high temperature elemental mercury capture from flue gas , 2013 .

[13]  J. Wilcox,et al.  DFT Study of Hg Oxidation across Vanadia-Titania SCR Catalyst under Flue Gas Conditions , 2013 .

[14]  C. Zheng,et al.  Theoretical studies of mercury–bromine species adsorption mechanism on carbonaceous surface , 2013 .

[15]  Jing Liu,et al.  The adsorption mechanism of elemental mercury on CuO (1 1 0) surface , 2012 .

[16]  Q. Zhong,et al.  Mn and Fe Modified Fly Ash As a Superior Catalyst for Elemental Mercury Capture under Air Conditions , 2012 .

[17]  S. Aboud,et al.  Investigation of adsorption behavior of mercury on Au(111) from first principles. , 2012, Environmental science & technology.

[18]  A. Chaka,et al.  Structure and Stability of Hydrated β-MnO2 Surfaces , 2012 .

[19]  C. Zheng,et al.  Effect of SO2 on mercury binding on carbonaceous surfaces , 2012 .

[20]  Kyoungjin Lee,et al.  Mercury adsorption and oxidation in coal combustion and gasification processes , 2012 .

[21]  A. Chaka,et al.  First-Principles Calculations of Clean, Oxidized, and Reduced β-MnO2 Surfaces , 2011 .

[22]  Hailong Li,et al.  CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. , 2011, Environmental science & technology.

[23]  Hai-Long Li,et al.  Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas , 2011 .

[24]  Y. Duan,et al.  Effect of Manganese Ions on the Structure of Ca(OH)2 and Mercury Adsorption Performance of Mnx+/Ca(OH)2 Composites , 2011 .

[25]  S. Aboud,et al.  Surface reactivity of V 2 O 5 (001): Effects of vacancies, protonation, hydroxylation, and chlorination , 2011 .

[26]  A. Chaka,et al.  First-Principles Calculations of Clean , Oxidized , and Reduced β-MnO 2 Surfaces , 2011 .

[27]  J. Jia,et al.  Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. , 2010, Environmental science & technology.

[28]  J. Jia,et al.  Adsorption and Catalytic Oxidation of Gaseous Elemental Mercury in Flue Gas over MnOx/Alumina , 2009 .

[29]  Toshiyuki Naito,et al.  Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst , 2008 .

[30]  A. Presto,et al.  Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations , 2008 .

[31]  K. Powers,et al.  Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. , 2008, Environmental science & technology.

[32]  P. Smirniotis,et al.  Manganese Oxide/Titania Materials for Removal of NOx and Elemental Mercury from Flue Gas , 2008 .

[33]  T. Al,et al.  Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS , 2007 .

[34]  A. Presto,et al.  Survey of catalysts for oxidation of mercury in flue gas. , 2006, Environmental science & technology.

[35]  G. Flamant,et al.  Determination of kinetic law for toxic metals release during thermal treatment of model waste in a fluid-bed reactor. , 2005, Environmental science & technology.

[36]  M. Scheffler,et al.  Composition and structure of the RuO2(110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 , 2003, cond-mat/0301602.

[37]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[38]  Sharma,et al.  Catalytic effects of carbon sorbents for mercury capture , 2000, Journal of hazardous materials.

[39]  E. Granite,et al.  Novel Sorbents For Mercury Removal From Flue Gas , 2000 .

[40]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  C. Howard,et al.  Powder Neutron Diffraction Study of Pyrolusite, β-MnO2 , 1993 .