Multivariate visualization of particle data

In this review paper, we review methods for interactive particle rendering techniques, multi-view particle visualization systems, multivariate visualization techniques, and methods for correlation visualizations. Visualization is vital for gaining insight into particle data. Multivariate particle data are generated to understand different aspects of the underlying physics. The visualization of multivariate particle data is typically performed in multiple linked view systems (multi-view systems) that render particles of interest that are selected by the user interactively with brushing-and-linking. To this end, the non-spatial aspects of particles are explored with multivariate visualization methods, e.g., scatter plots, scatter plot matrix, parallel coordinates, dimensional reduction and radial plots.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[3]  W. Cleveland,et al.  Regression by local fitting: Methods, properties, and computational algorithms , 1988 .

[4]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[5]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[6]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[7]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[8]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[9]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[10]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[11]  Daniel A. Keim,et al.  Information Visualization and Visual Data Mining , 2002, IEEE Trans. Vis. Comput. Graph..

[12]  Stefan Gumhold,et al.  Splatting Illuminated Ellipsoids with Depth Correction , 2003, VMV.

[13]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[14]  Case study: visual analysis of complex, time-dependent simulation results of a diesel exhaust system , 2004 .

[15]  H. Hauser,et al.  Interactive focus+context visualization with linked 2D/3D scatterplots , 2004, Proceedings. Second International Conference on Coordinated and Multiple Views in Exploratory Visualization, 2004..

[16]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[17]  Thomas Ertl,et al.  Hardware-Accelerated Glyphs for Mono- and Dipoles in Molecular Dynamics Visualization , 2005, EuroVis.

[18]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[19]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[20]  Pierre Dragicevic,et al.  Rolling the Dice: Multidimensional Visual Exploration using Scatterplot Matrix Navigation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Prabhat,et al.  High performance multivariate visual data exploration for extremely large data , 2008, HiPC 2008.

[22]  Lars Linsen,et al.  Surface Extraction from Multi-field Particle Volume Data Using Multi-dimensional Cluster Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[23]  Ross T. Whitaker,et al.  Particle-based Sampling and Meshing of Surfaces in Multimaterial Volumes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  Daniel Weiskopf,et al.  Continuous Scatterplots , 2008, IEEE Transactions on Visualization and Computer Graphics.

[25]  Daniel Weiskopf,et al.  Continuous Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[26]  Daniel Weiskopf,et al.  Illuminated 3D Scatterplots , 2009, Comput. Graph. Forum.

[27]  Rüdiger Westermann,et al.  Efficient High-Quality Volume Rendering of SPH Data , 2010, IEEE Transactions on Visualization and Computer Graphics.

[28]  Dirk J. Lehmann,et al.  Discontinuities in Continuous Scatter Plots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[29]  Kwan-Liu Ma,et al.  Flow-based scatterplots for sensitivity analysis , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[30]  Jarke J. van Wijk,et al.  Flexible Linked Axes for Multivariate Data Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[31]  Dirk J. Lehmann,et al.  Features in Continuous Parallel Coordinates , 2011, IEEE Transactions on Visualization and Computer Graphics.

[32]  David W. Scott,et al.  Multivariate Density Estimation and Visualization , 2012 .

[33]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[34]  Jonathan C. Roberts,et al.  Visualization for the Physical Sciences , 2012, Comput. Graph. Forum.

[35]  Michael J. McGuffin,et al.  Tracing Tuples Across Dimensions: A Comparison of Scatterplots and Parallel Coordinate Plots , 2012, Comput. Graph. Forum.

[36]  Lars Linsen,et al.  Continuous Representation of Projected Attribute Spaces of Multifields over Any Spatial Sampling , 2013, Comput. Graph. Forum.

[37]  Charles D. Hansen,et al.  Transfer function design based on user selected samples for intuitive multivariate volume exploration , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[38]  Carlos D. Correa,et al.  The generalized sensitivity scatterplot. , 2013, IEEE transactions on visualization and computer graphics.

[39]  Matemáticas Nonlinear Dimensionality Reduction , 2013 .

[40]  Kwan-Liu Ma,et al.  The Generalized Sensitivity Scatterplot , 2013, IEEE Transactions on Visualization and Computer Graphics.

[41]  Matthias Teschner,et al.  SPH Fluids in Computer Graphics , 2014, Eurographics.

[42]  Valerio Pascucci,et al.  CPU ray tracing large particle data with balanced P-k-d trees , 2015, 2015 IEEE Scientific Visualization Conference (SciVis).

[43]  Thomas Ertl,et al.  MegaMol—A Prototyping Framework for Particle-Based Visualization , 2015, IEEE Transactions on Visualization and Computer Graphics.

[44]  Paul Rosen,et al.  Improved Identification of Data Correlations through Correlation Coordinate Plots , 2016, VISIGRAPP.

[45]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[46]  Michael Krone,et al.  Visual Debugging of SPH Simulations , 2017, 2017 21st International Conference Information Visualisation (IV).

[47]  Daniel Weiskopf,et al.  Comparative eye-tracking evaluation of scatterplots and parallel coordinates , 2017, Vis. Informatics.

[48]  Paul Rosen,et al.  DSPCP: A Data Scalable Approach for Identifying Relationships in Parallel Coordinates , 2018, IEEE Transactions on Visualization and Computer Graphics.

[49]  Daniel Weiskopf,et al.  Contrast Enhancement Based on Viewing Distance , 2018, VINCI.

[50]  Daniel Weiskopf,et al.  Indexed-Points Parallel Coordinates Visualization of Multivariate Correlations , 2018, IEEE Transactions on Visualization and Computer Graphics.