Beam steering with a nonlinear optical phased array antenna.

Transition metal dichalcogenides (TMDCs) exhibit high second harmonic (SH) generation in the visible due to their non-centrosymmetric crystal structure in odd-layered form and direct bandgap transition when thinned down to a monolayer. In order to emit the SH radiation into a desired direction one requires a means to control the phase of the in-plane nonlinear polarization. Here, we couple the SH response of a monolayer MoS2 to an optical phased array antenna and demonstrate controllable steering of the nonlinear emission. By exploiting the intrinsic SH generation by the phased array antenna we achieve uniform emission efficiency into a broad angular range. Our work has relevance for novel optoelectronic applications, such as programmable optical interconnects and on-chip LIDAR.

[1]  Richard L. Sutherland,et al.  Handbook of Nonlinear Optics , 1996 .

[2]  Andrew G. Glen,et al.  APPL , 2001 .

[3]  Thomas A. Milligan,et al.  Modern Antenna Design: Milligan/Modern Antenna Design , 2005 .

[4]  L. Eng,et al.  3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays , 2012 .

[5]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[6]  Vibhor Singh,et al.  Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping , 2013, 1311.4829.

[7]  Michal Lipson,et al.  WDM-compatible mode-division multiplexing on a silicon chip , 2014, Nature Communications.

[8]  Harald Giessen,et al.  Imaging and steering an optical wireless nanoantenna link , 2014, Nature Communications.

[9]  Jun Wang,et al.  Giant two‐photon absorption in monolayer MoS2 , 2015, 1503.02259.

[10]  Sailing He,et al.  Three-Photon Luminescence of Gold Nanorods and Its Applications for High Contrast Tissue and Deep In Vivo Brain Imaging , 2015, Theranostics.

[11]  Y. Prior,et al.  Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces , 2015, Nature communications.

[12]  Xiang Zhang,et al.  Atomically phase-matched second-harmonic generation in a 2D crystal , 2016, Light: Science & Applications.

[13]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[14]  Zach DeVito,et al.  Opt , 2017 .

[15]  S. Burger,et al.  Polarization-Dependent Second Harmonic Diffraction from Resonant GaAs Metasurfaces , 2018 .

[16]  Kenji Watanabe,et al.  Minimizing residues and strain in 2D materials transferred from PDMS , 2018, Nanotechnology.

[17]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[18]  Hyeyoung Ahn,et al.  Plasmonic Enhancement and Manipulation of Optical Nonlinearity in Monolayer Tungsten Disulfide , 2018, Laser & Photonics Reviews.

[19]  Cheng-Wei Qiu,et al.  Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates. , 2018, ACS nano.

[20]  H. Long,et al.  Tungsten Disulfide-Gold Nanohole Hybrid Metasurfaces for Nonlinear Metalenses in the Visible Region. , 2017, Nano letters.

[21]  A. Lemaître,et al.  Zero-Order Second Harmonic Generation from AlGaAs-on-Insulator Metasurfaces , 2019, ACS Photonics.

[22]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[23]  Bing Wang,et al.  Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface , 2019, Nature Photonics.

[24]  A. Adibi,et al.  Phase-matched nonlinear second-harmonic generation in plasmonic metasurfaces , 2019, Nanophotonics.

[25]  Teri W Odom,et al.  Second Harmonic Spectroscopy of Surface Lattice Resonances. , 2018, Nano letters.

[26]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[27]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.