A New Approach for the Analysis of Hyperspectral Data: Theory and Sensitivity Analysis of the Moment Distance Method

We present the Moment Distance (MD) method to advance spectral analysis in vegetation studies. It was developed to take advantage of the information latent in the shape of the reflectance curve that is not available from other spectral indices. Being mathematically simple but powerful, the approach does not require any curve transformation, such as smoothing or derivatives. Here, we show the formulation of the MD index (MDI) and demonstrate its potential for vegetation studies. We simulated leaf and canopy reflectance samples derived from the combination of the PROSPECT and SAIL models to understand the sensitivity of the new method to leaf and canopy parameters. We observed reasonable agreements between vegetation parameters and the MDI when using the 600 to 750 nm wavelength range, and we saw stronger agreements in the narrow red-edge region 720 to 730 nm. Results suggest that the MDI is more sensitive to the Chl content, especially at higher amounts (Chl > 40 mg/cm2) compared to other indices such as NDVI, EVI, and WDRVI. Finally, we found an indirect relationship of MDI against the changes of the magnitude of the reflectance around the red trough with differing values of LAI.

[1]  C. Justice,et al.  Analysis of the dynamics of African vegetation using the normalized difference vegetation index , 1986 .

[2]  A. Viña,et al.  New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops , 2005 .

[3]  Élizabeth L. Simms,et al.  Multisensor NDVI-Based Monitoring of the Tundra-Taiga Interface (Mealy Mountains, Labrador, Canada) , 2013, Remote. Sens..

[4]  M. Schlerf,et al.  Suitability and adaptation of PROSAIL radiative transfer model for hyperspectral grassland studies , 2013 .

[5]  A. Viña,et al.  Remote estimation of canopy chlorophyll content in crops , 2005 .

[6]  Michael D. Steven,et al.  High resolution derivative spectra in remote sensing , 1990 .

[7]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[8]  M. Cho,et al.  Towards red‐edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data , 2008 .

[9]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[10]  J. Dungan,et al.  Exploring the relationship between reflectance red edge and chlorophyll content in slash pine. , 1990, Tree physiology.

[11]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[12]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[13]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[14]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[15]  Fred A. Kruse,et al.  Effect of Reduced Spatial Resolution on Mineral Mapping Using Imaging Spectrometry - Examples Using Hyperspectral Infrared Imager (HyspIRI)-Simulated Data , 2011, Remote. Sens..

[16]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[17]  J. Clevers,et al.  Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data , 2004 .

[18]  Yukio Kosugi,et al.  Leaf Parameter Estimation Based on Leaf Scale Hyperspectral Imagery , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[19]  Craig S. T. Daughtry,et al.  Towards estimation of canopy foliar biomass with spectral reflectance measurements , 2011 .

[20]  F. Ahern The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine , 1988 .

[21]  F. Baret,et al.  TSAVI: A Vegetation Index Which Minimizes Soil Brightness Effects On LAI And APAR Estimation , 1989, 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium,.

[22]  L. D. Miller,et al.  Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado , 1972 .

[23]  A. J. Richardsons,et al.  DISTINGUISHING VEGETATION FROM SOIL BACKGROUND INFORMATION , 1977 .

[24]  A. Gitelson,et al.  Quantitative estimation of chlorophyll-a using reflectance spectra : experiments with autumn chestnut and maple leaves , 1994 .

[25]  F. Baret,et al.  About the soil line concept in remote sensing , 1993 .

[26]  A. Gitelson Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. , 2004, Journal of plant physiology.

[27]  A. Viña,et al.  Remote estimation of leaf area index and green leaf biomass in maize canopies , 2003 .

[28]  Ted R. Hedman,et al.  Performance characterization of the Hyperion Imaging Spectrometer instrument , 2000, SPIE Optics + Photonics.

[29]  John Shepanski,et al.  Hyperion, a space-based imaging spectrometer , 2003, IEEE Trans. Geosci. Remote. Sens..

[30]  Geoffrey M. Henebry,et al.  Separability of maize and soybean in the spectral regions of chlorophyll and carotenoids using the Moment Distance Index , 2011 .

[31]  R. Kauth,et al.  The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat , 1976 .

[32]  Jihua Wang,et al.  Comparison of spectral indices and wavelet transform for estimating chlorophyll content of maize from hyperspectral reflectance , 2013 .

[33]  A. Viña,et al.  Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity , 2012 .

[34]  S. Brantley,et al.  Application of hyperspectral vegetation indices to detect variations in high leaf area index temperate shrub thicket canopies , 2011 .

[35]  Fumin Wang,et al.  New Vegetation Index and Its Application in Estimating Leaf Area Index of Rice , 2007 .

[36]  F. J. García-Haro,et al.  A generalized soil-adjusted vegetation index , 2002 .

[37]  F. Baret,et al.  A ratio vegetation index adjusted for soil brightness , 1990 .

[38]  C. Perry,et al.  Functional equivalence of spectral vegetation indices , 1984 .

[39]  José A. M. Demattê,et al.  Derivation of Soil Line Influence on Two-Band Vegetation Indices and Vegetation Isolines , 2009, Remote. Sens..

[40]  T. Carlson,et al.  On the relation between NDVI, fractional vegetation cover, and leaf area index , 1997 .

[41]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[42]  G. Okin,et al.  The contribution of brown vegetation to vegetation dynamics. , 2010, Ecology.

[43]  Frédéric Baret,et al.  Use of spectral analogy to evaluate canopy reflectance sensitivity to leaf optical properties , 1994 .

[44]  Hui Qing Liu,et al.  A feedback based modification of the NDVI to minimize canopy background and atmospheric noise , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Prasad S. Thenkabail,et al.  Hyperspectral Data Mining , 2016 .

[46]  J. Peñuelas,et al.  The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. , 1994 .

[47]  Weirong Chen,et al.  Spatio-spectral heterogeneity analysis using EO-1 Hyperion imagery , 2010, Comput. Geosci..

[48]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[49]  Chaoyang Wu,et al.  Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .

[50]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[51]  N. H. Brogea,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2022 .

[52]  D. Deering Measuring forage production of grazing units from Landsat MSS data , 1975 .

[53]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[54]  Jingyun Fang,et al.  Changing climate affects vegetation growth in the arid region of the northwestern China , 2011 .

[55]  A. R. Harrison,et al.  The NDVI and spectral decomposition for semi-arid vegetation abundance estimation , 1998 .

[56]  Ranga B. Myneni,et al.  The interpretation of spectral vegetation indexes , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[57]  Geoffrey M. Henebry,et al.  Characterizing tropical forest spatio‐temporal heterogeneity using the Wide Dynamic Range Vegetation Index (WDRVI) , 2008 .

[58]  Geoffrey M. Henebry,et al.  Area between Peaks Feature in the Derivative Reflectance Curve as a Sensitive Indicator of Change in Chlorophyll Concentration , 2009 .

[59]  Geoffrey M. Henebry,et al.  Monitoring sustainability in tropical forests: how changes in canopy spatial pattern can indicate forest stands for biodiversity surveys , 2006, IEEE Geoscience and Remote Sensing Letters.

[60]  Marvin E. Bauer,et al.  Spectral estimates of solar radiation intercepted by corn canopies. , 1983 .

[61]  Manuel Sánchez de la Orden,et al.  Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[62]  Anatoly A. Gitelson,et al.  Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index , 2004 .

[63]  A. Huete,et al.  Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission , 2013 .

[64]  A. Gitelson,et al.  Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction , 2002 .

[65]  A. Gitelson,et al.  Three‐band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves , 2006 .

[66]  A. Bannari,et al.  Effets de la couleur et de la brillance du sol sur les indices de végétation , 1996 .

[67]  Andrés Viña,et al.  Evaluating vegetation indices for assessing productivity along a tropical rain forest chronosequence in Western Amazonia , 2012 .

[68]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[69]  N. Pettorelli,et al.  Using the satellite-derived NDVI to assess ecological responses to environmental change. , 2005, Trends in ecology & evolution.

[70]  Holly Croft,et al.  Modelling leaf chlorophyll content in broadleaf and needle leaf canopies from ground, CASI, Landsat TM 5 and MERIS reflectance data , 2013 .

[71]  Anatoly A. Gitelson,et al.  Nondestructive Estimation of Anthocyanin Content in Grapevine Leaves , 2009, American Journal of Enology and Viticulture.

[72]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[73]  A. Gitelson,et al.  Remote estimation of crop fractional vegetation cover: the use of noise equivalent as an indicator of performance of vegetation indices , 2013 .

[74]  Prasad S. Thenkabail,et al.  Nondestructive Estimation of Foliar Pigment (Chlorophylls, Carotenoids, and Anthocyanins) Contents: Evaluating a Semianalytical Three-Band Model , 2016 .

[75]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[76]  Sunil Narumalani,et al.  Enhancing the detection and classification of coral reef and associated benthic habitats: A hyperspectral remote sensing approach , 2007 .

[77]  F. Baret,et al.  PROSPECT: A model of leaf optical properties spectra , 1990 .

[78]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[79]  Frédéric Baret,et al.  Modeled analysis of the biophysical nature of spectral shifts and comparison with information content of broad bands , 1992 .

[80]  Roberta E. Martin,et al.  PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments , 2008 .

[81]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[82]  Eric P. Crist,et al.  A Physically-Based Transformation of Thematic Mapper Data---The TM Tasseled Cap , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[83]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[84]  Jean-Philippe Gastellu-Etchegorry,et al.  Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI , 2013, Remote. Sens..