Hempel's Raven Paradox: A Lacuna in the Standard Bayesian Solution

According to Hempel's paradox, evidence (E) that an object is a nonblack nonraven confirms the hypothesis (H) that every raven is black. According to the standard Bayesian solution, E does confirm H but only to a minute degree. This solution relies on the almost never explicitly defended assumption that the probability of H should not be affected by evidence that an object is nonblack. I argue that this assumption is implausible, and I propose a way out for Bayesians. 1. Introduction2. Hempel's paradox, the standard Bayesian solution, and the disputed assumption3. Attempts to defend the disputed assumption4. Attempts to refute the disputed assumption5. A way out for Bayesians6. Conclusion Introduction Hempel's paradox, the standard Bayesian solution, and the disputed assumption Attempts to defend the disputed assumption Attempts to refute the disputed assumption A way out for Bayesians Conclusion

[1]  Dana,et al.  JSL volume 88 issue 4 Cover and Front matter , 1983, The Journal of Symbolic Logic.

[2]  Branden Fitelson The Plurality of Bayesian Measures of Confirmation and the Problem of Measure Sensitivity , 1999, Philosophy of Science.

[3]  Jon Dorling,et al.  THE STRUCTURE OF SCIENTIFIC INFERENCE* , 1975, The British Journal for the Philosophy of Science.

[4]  David Lewis,et al.  Papers in metaphysics and epistemology: Humean Supervenience debugged , 1999 .

[5]  Branden Fitelson,et al.  A Bayesian Account of Independent Evidence with Applications , 2001, Philosophy of Science.

[6]  Carl G. Hempel,et al.  A purely syntactical definition of confirmation , 1943, Journal of Symbolic Logic.

[7]  W. Poundstone Labyrinths of Reason: Paradox, Puzzles, and the Frailty of Knowledge , 1988 .

[8]  Jean Nicod,et al.  Le problème logique de l'induction , 1923 .

[9]  M. J. Osler Laws and symmetry , 1993 .

[10]  J. Earman,et al.  Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory , 1994 .

[11]  Leland Gerson Neuberg,et al.  Bayes or Bust?-A Critical Examination of Bayesian Confirmation Theory. , 1994 .

[12]  J. Hintikka Inductive Independence and the Paradoxes of Confirmation , 1969 .

[13]  Ellery Eells Rational Decision and Causality , 1982 .

[14]  Charles S. Chihara Quine and the Confirmational Paradoxes , 1981 .

[15]  Malcolm R. Forster,et al.  Non-bayesian foundations for statistical estimation, prediction, and the ravens example , 1994 .

[16]  P. Maher Inductive Logic and the Ravens Paradox , 1999, Philosophy of Science.

[17]  The resolution of the confirmation paradox , 1965 .

[18]  Janina Hosiasson-Lindenbaum,et al.  On confirmation , 1940, Journal of Symbolic Logic (JSL).

[19]  Richard C. Jeffrey,et al.  Studies in inductive logic and probability , 1971 .

[20]  (C) Instances, the Relevance Criterion, and the Paradoxes of Confirmation , 1978, Philosophy of Science.

[21]  Jean Nicod,et al.  Foundations of Geometry and Induction , 1930 .

[22]  R. Giere An Orthodox Statistical Resolution of the Paradox of Confirmation , 1970, Philosophy of Science.

[23]  The Bayesians and the Raven Paradox , 1989 .

[24]  B. Skyrms Nomological Necessity and the Paradoxes of Confirmation , 1966, Philosophy of Science.

[25]  Laurence Goldstein,et al.  Paradoxes: Their Roots, Range and Resolution , 2004 .

[26]  R. Swinburne An introduction to confirmation theory , 1973 .

[27]  D. Stove Hempel's Paradox , 1966, Dialogue.

[28]  P. Maher QUALITATIVE CONFIRMATION AND THE RAVENS PARADOX , 2005 .

[29]  Joerg Tuske Dinnaga and the Raven Paradox , 1998 .

[30]  Irving John Good,et al.  THE WHITE SHOE QUA HERRING IS PINK , 1968, The British Journal for the Philosophy of Science.

[31]  I. Good The White Shoe is a Red Herring , 1967 .

[32]  S. Morgenbesser Goodman on the Ravens , 1962 .

[33]  Edward Mackinnon Aspects of Scientific Explanation: and Other Essays in the Philosophy of Science , 1967 .

[34]  L. Gibson ON ‘RAVENS AND RELEVANCE’ AND A LIKELIHOOD SOLUTION OF THE PARADOX OF CONFIRMATION , 1969, The British Journal for the Philosophy of Science.

[35]  J. Hintikka,et al.  Aspects of Inductive Logic. , 1968 .

[36]  Van Fraassen,et al.  Laws and symmetry , 1989 .

[37]  H. G. Alexander THE PARADOXES OF CONFIRMATION , 1958, The British Journal for the Philosophy of Science.

[38]  R. H. Vincent Selective confirmation and the Ravens , 1975, Dialogue.

[39]  S. F. Barker,et al.  The Anatomy of Inquiry: Philosophical Studies in the Theory of Science , 1966 .

[40]  Shelley Stillwell Confirmation, Paradoxes, and Possible Worlds , 1985, The British Journal for the Philosophy of Science.

[41]  L. Good,et al.  THE PARADOX OF CONFIRMATION* , 1960, The British Journal for the Philosophy of Science.

[42]  Patrick Suppes A Bayesian Approach to the Paradoxes of Confirmation , 1966 .

[43]  Van Fraassen,et al.  Belief and the Will , 1984 .

[44]  Israel Scheffler,et al.  The Anatomy of Inquiry : Philosophical Studies in the Theory of Science , 1965 .

[45]  Michael Clark,et al.  Paradoxes from A to Z , 2002 .

[46]  Bas C. van Fraassen,et al.  Belief and the problem of Ulysses and the sirens , 1995 .

[47]  Carl G. Hempel,et al.  I.—STUDIES IN THE LOGIC OF CONFIRMATION (II.) , 1945 .

[48]  Max Black,et al.  Notes on the “Paradoxes of Confirmation” , 1966 .

[49]  David Miller,et al.  Inference, method, and decision , 1977 .

[50]  A new approach to the confirmation paradox , 1964 .

[51]  Relevance and the Ravens* , 1968, The British Journal for the Philosophy of Science.

[52]  Carl G. Hempel,et al.  THE WHITE SHOE: NO RED HERRING , 1967, The British Journal for the Philosophy of Science.

[53]  Kevin B. Korb,et al.  Infinitely Many Resolutions of Hempel's Paradox , 1994, TARK.

[54]  James M. Joyce The Foundations of Causal Decision Theory , 1999 .

[55]  Does the Philosophy of Induction Rest on a Mistake , 1982 .

[56]  Menachem Fisch,et al.  Hempel's ravens, the natural classification of hypotheses and the growth of knowledge , 1984 .

[57]  R. Jeffrey A brief guide to the work of Carl Gustav Hempel , 1995 .

[58]  Theodorus Kuipers Confirmation, Empirical Progress, and Truth Approximation, Essays in Debate with Theo Kuipers , 2005 .

[59]  M. Black Review: Karl Menger, Tri-Operational Algebra; Ferdinand L. Brown, Remarks Concerning Tri-Operational Algebra; Carl G. Hempel, Studies in the Logic of Confirmation , 1945 .

[60]  V. Vieland,et al.  Statistical Evidence: A Likelihood Paradigm , 1998 .

[61]  James Woodward,et al.  Critical review: Horwich on the ravens, projectability and induction , 1985 .

[62]  Subjective probability, natural predicates and Hempel's ravens , 1979 .

[63]  Hempel meets wason , 1994 .

[64]  Israel Scheffler,et al.  The anatomy of inquiry , 1963 .

[65]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[66]  Nicholas Griffin,et al.  THE PRINCIPLES OF SCIENTIFIC THINKING , 1971 .

[67]  Jürgen Humburg,et al.  The solution of Hempel's raven paradox in rudolf Carnap's system of inductive logic , 1986 .

[68]  D. Lewis A Subjectivist’s Guide to Objective Chance , 1980 .

[69]  Yael Cohen Ravens and relevance , 1987 .

[70]  R. Schwartz Paradox and Projection , 1972, Philosophy of Science.

[71]  I. Good,et al.  THE PARADOX OF CONFIRMATION (II) , 1961, The British Journal for the Philosophy of Science.

[72]  E. Eells,et al.  Measuring Confirmation and Evidence , 2000 .

[73]  Nelson Goodman,et al.  Selective confirmation and the ravens: A reply to Foster , 1972 .