Compressive Deconvolution in Random Mask Imaging
暂无分享,去创建一个
[1] M. Talagrand. The Generic Chaining , 2005 .
[2] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[3] M Unser,et al. 3‐D PSF fitting for fluorescence microscopy: implementation and localization application , 2013, Journal of microscopy.
[4] Justin K. Romberg,et al. Compressive Sensing by Random Convolution , 2009, SIAM J. Imaging Sci..
[5] Daniel L Marks,et al. Compressive holography. , 2009, Optics express.
[6] E. Candès,et al. Compressive fluorescence microscopy for biological and hyperspectral imaging , 2012, Proceedings of the National Academy of Sciences.
[7] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[8] Holger Rauhut,et al. Compressive Sensing with structured random matrices , 2012 .
[9] R. M. Willett,et al. Compressed sensing for practical optical imaging systems: A tutorial , 2011, IEEE Photonics Conference 2012.
[10] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[11] Joel A. Tropp,et al. User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..
[12] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[13] T. R. Gosnell,et al. Digital Image Reconstruction: Deblurring and Denoising , 2005 .
[14] Yonina C Eldar,et al. Super-resolution and reconstruction of sparse sub-wavelength images. , 2009, Optics express.
[15] K. Siddaraju,et al. DIGITAL IMAGE RESTORATION , 2011 .
[16] Justin K. Romberg,et al. Restricted Isometries for Partial Random Circulant Matrices , 2010, ArXiv.
[17] Henry Arguello,et al. Compressive Coded Aperture Spectral Imaging: An Introduction , 2014, IEEE Signal Processing Magazine.
[18] S. Foucart. A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .
[19] H. Rauhut. Compressive Sensing and Structured Random Matrices , 2009 .
[20] Massimo Fornasier,et al. Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.
[21] S. Foucart. Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .
[22] Holger Rauhut,et al. Suprema of Chaos Processes and the Restricted Isometry Property , 2012, ArXiv.
[23] Ting Sun,et al. Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..
[24] Massimo Fornasier,et al. Compressive Sensing and Structured Random Matrices , 2010 .