A 0.016 mm2 12 b $\Delta \Sigma $ SAR With 14 fJ/conv. for Ultra Low Power Biosensor Arrays

The instrumentation systems for implantable brain–machine interfaces represent one of the most demanding applications for ultra low-power analogue-to-digital-converters (ADC) to date. To address this challenge, this paper proposes a <inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma $ </tex-math></inline-formula>SAR topology for very large sensor arrays that allows an exceptional reduction in silicon footprint by using a continuous time 0–2MASH topology. This configuration uses a specialized FIR window to decimate the <inline-formula> <tex-math notation="LaTeX">$\Delta \Sigma $ </tex-math></inline-formula> modulator output and reject mismatch errors from the SAR quantizer, which mitigates the overhead from dynamic element matching techniques commonly used to achieve high precision. A fully differential prototype was fabricated using <inline-formula> <tex-math notation="LaTeX">$0.18\,\mu $ </tex-math></inline-formula>m CMOS to demonstrate 10.8 ENOB precision with a 0.016 mm<sup>2</sup> silicon footprint. Moreover, a 14fJ/conv figure-of-merit can be achieved, while resolving signals with the maximum input amplitude of ±1.2 Vpp sampled at 200 kS/s. The ADC topology exhibits a number of promising characteristics for both high speed and ultra low-power systems due to the reduced complexity, switching noise, sampling load, and oversampling ratio, which are critical parameters for many sensor applications.

[1]  Nan Sun,et al.  Dynamic Element Matching With Signal-Independent Element Transition Rates for Multibit $\Delta\Sigma$ Modulators , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Akira Matsuzawa,et al.  A 9.35-ENOB, 14.8 fJ/conv.-step fully-passive noise-shaping SAR ADC , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[3]  Yong Lian,et al.  A 0.8-V, 1-MS/s, 10-bit SAR ADC for Multi-Channel Neural Recording , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[4]  Kofi A. A. Makinwa,et al.  A 6.3 µW 20 bit Incremental Zoom-ADC with 6 ppm INL and 1 µV Offset , 2013, IEEE Journal of Solid-State Circuits.

[5]  Gabor C. Temes,et al.  An 8.1 mW, 82 dB Delta-Sigma ADC With 1.9 MHz BW and -98 dB THD , 2009, IEEE J. Solid State Circuits.

[6]  Bernhard E. Boser,et al.  The Design of Sigma-Delta Modulation Analog-to-Digit a 1 Converters , 2004 .

[7]  George Jie Yuan,et al.  A 75 dB SNDR 10-MHz Signal Bandwidth Gm-C-Based Sigma-Delta Modulator With a Nonlinear Feedback Compensation Technique , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Richard Schreier,et al.  An empirical study of high-order single-bit delta-sigma modulators , 1993 .

[9]  James D. Plummer,et al.  A High-Resolution Low-Power Incremental $\Sigma\Delta$ ADC With Extended Range for Biosensor Arrays , 2010, IEEE Journal of Solid-State Circuits.

[10]  Xicai Yue,et al.  Determining the reliable minimum unit capacitance for the DAC capacitor array of SAR ADCs , 2013, Microelectron. J..

[11]  R. Webster A generalized hamming window , 1978 .

[12]  Zhangming Zhu,et al.  A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-$\mu{\rm m}$ CMOS for Medical Implant Devices , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  G. Temes,et al.  Wideband low-distortion delta-sigma ADC topology , 2001 .

[14]  Georges Gielen,et al.  The Nyquist Criterion : A Useful Tool for the Robust Design of Continuous-Time Σ ∆ Modulators , 2010 .

[15]  A.P. Chandrakasan,et al.  An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes , 2007, IEEE Journal of Solid-State Circuits.

[16]  Sha Tao,et al.  A Power-Efficient Continuous-Time Incremental Sigma-Delta ADC for Neural Recording Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  D.A. Hodges,et al.  A self-calibrating 15 bit CMOS A/D converter , 1984, IEEE Journal of Solid-State Circuits.

[18]  Timothy G. Constandinou,et al.  A 2.7μW/MIPS, 0.88GOPS/mm2 distributed processor for implantable brain machine interfaces , 2016, 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[19]  Tien-Yu Lo,et al.  An Oversampling SAR ADC With DAC Mismatch Error Shaping Achieving 105 dB SFDR and 101 dB SNDR Over 1 kHz BW in 55 nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[20]  Karim Abdelhalim,et al.  64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator , 2013, IEEE Journal of Solid-State Circuits.

[21]  Timothy G. Constandinou,et al.  A compact recording array for neural interfaces , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[22]  Pierluigi Nuzzo,et al.  Noise Analysis of Regenerative Comparators for Reconfigurable ADC Architectures , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  Yuksel Temiz,et al.  A 0.18 $\mu {\rm m}$ Biosensor Front-End Based on $1/f$ Noise, Distortion Cancelation and Chopper Stabilization Techniques , 2013, IEEE Transactions on Biomedical Circuits and Systems.

[24]  Yung-Hui Chung,et al.  A 24- $\mu \text{W}$ 12-bit 1-MS/s SAR ADC With Two-Step Decision DAC Switching in 110-nm CMOS , 2016, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[25]  Brian Litt,et al.  Drug discovery: A jump-start for electroceuticals , 2013, Nature.

[26]  Gabor C. Temes,et al.  A Micro-Power Two-Step Incremental Analog-to-Digital Converter , 2015, IEEE Journal of Solid-State Circuits.

[27]  Arthur H. M. van Roermund,et al.  11.1 An oversampled 12/14b SAR ADC with noise reduction and linearity enhancements achieving up to 79.1dB SNDR , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[28]  Wan Kim,et al.  Normalized-Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  Georges G. E. Gielen,et al.  The Nyquist Criterion: A Useful Tool for the Robust Design of Continuous-Time $\Sigma\Delta$ Modulators , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  Kong-Pang Pun,et al.  Next-Generation Delta-Sigma Converters: Trends and Perspectives , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[31]  Kyoungtae Lee,et al.  A Scaling-Friendly Low-Power Small-Area $\Delta\Sigma$ ADC With VCO-Based Integrator and Intrinsic Mismatch Shaping Capability , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[32]  Gabor C. Temes,et al.  A 16 b Multi-Step Incremental Analog-to-Digital Converter With Single-Opamp Multi-Slope Extended Counting , 2017, IEEE Journal of Solid-State Circuits.

[33]  E. Hogenauer,et al.  An economical class of digital filters for decimation and interpolation , 1981 .

[34]  Atila Alvandpour,et al.  A 0.4-V Subnanowatt 8-Bit 1-kS/s SAR ADC in 65-nm CMOS for Wireless Sensor Applications , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[35]  Zhangming Zhu,et al.  A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18- μm CMOS for Medical Implant Devices. , 2015 .

[36]  Dario Petri,et al.  Estimation of the In-Band Delta–Sigma Noise Power Based on Windowed Data , 2006, IEEE Transactions on Instrumentation and Measurement.

[37]  Michael P. Flynn,et al.  A 90-MS/s 11-MHz-Bandwidth 62-dB SNDR Noise-Shaping SAR ADC , 2012, IEEE Journal of Solid-State Circuits.

[38]  Akira Matsuzawa,et al.  A stability-improved single-opamp third-order ΣΔ modulator by using a fully-passive noise-shaping SAR ADC and passive adder , 2016, ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference.

[39]  Maurits Ortmanns,et al.  A 1.5-V 12-bit power-efficient continuous-time third-order /spl Sigma//spl Delta/ modulator , 2003 .

[40]  Byung-Geun Lee,et al.  A Low-Power Incremental Delta–Sigma ADC for CMOS Image Sensors , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[41]  Wenbo Liu,et al.  A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration , 2011, IEEE Journal of Solid-State Circuits.