Adaptive filtering and limiting in compact high order methods for multiscale gas dynamics and MHD systems

The adaptive multistep linear and nonlinear filters for multiscale shock/turbulence gas dynamics and magnetohydrodynamics (MHD) flows of the authors are extended to include compact high order central differencing as the spatial base scheme. The adaptive mechanism makes used of multiresolution wavelet decomposition of the computed flow data as sensors for numerical dissipative control. The objective is to expand the work initiated in [Yee HC, Sjogreen B. Nonlinear filtering in compact high order schemes. In: Proceedings of the 19th ICNSP and 7th APPTC conference; 2005; J Plasma Phys 2006;72:833-36] and compare the performance of adaptive multistep filtering in compact high order schemes with adaptive filtering in standard central (non-compact) schemes for multiscale problems containing shock waves.

[1]  Björn Sjögreen,et al.  Nonlinear filtering in compact high-order schemes , 2006, Journal of Plasma Physics.

[2]  Christopher J. Roy,et al.  Evaluation of Detached Eddy Simulation for Turbulent Wake Applications , 2005 .

[3]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[4]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[5]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[6]  H. C. Yee,et al.  Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations , 2001 .

[7]  M. Farge Wavelet Transforms and their Applications to Turbulence , 1992 .

[8]  C. Basdevant,et al.  Wavelet spectra compared to Fourier spectra , 1995 .

[9]  Neil D. Sandham,et al.  Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters , 1999 .

[10]  Björn Sjögreen,et al.  Multiresolution Wavelet Based Adaptive Numerical Dissipation Control for Shock-Turbulence Computations , 2001 .

[11]  Jan Nordström,et al.  Boundary and Interface Conditions for High-Order Finite-Difference Methods Applied to the Euler and Navier-Stokes Equations , 1999 .

[12]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[13]  Ravi Samtaney,et al.  Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field , 2003 .

[14]  Björn Sjögreen,et al.  Non-Linear Filtering and Limiting in High Order Methods for Ideal and Non-Ideal MHD , 2006, J. Sci. Comput..

[15]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[16]  Bjorn Sjogreen,et al.  Divergence Free High Order Filter Methods for the Compressible MHD Equations * , 2003 .

[17]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[18]  S. Mallat A wavelet tour of signal processing , 1998 .

[19]  Björn Sjögreen,et al.  Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .

[20]  H. C. Yee,et al.  Extension of Efficient Low Dissipative High Order Schemes for 3-D Curvilinear Moving Grids , 2000 .

[21]  Chi-Wang Shu,et al.  A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes , 2006, J. Comput. Phys..

[22]  Datta Gaitonde,et al.  Development of a solver for 3-D non-ideal magnetogasdynamics , 1999 .

[23]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[24]  R. D. Richtmyer Taylor instability in shock acceleration of compressible fluids , 1960 .

[25]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[26]  Björn Sjögreen,et al.  High order centered difference methods for the compressible Navier-Stokes equations , 1995 .

[27]  H. C. Yee,et al.  Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers , 2001, J. Sci. Comput..

[28]  Ravi Samtaney,et al.  Regular shock refraction at an oblique planar density interface in magnetohydrodynamics , 2005, Journal of Fluid Mechanics.

[29]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[30]  Björn Sjögreen,et al.  Simulation of Richtmyer–Meshkov instability by sixth-order filter methods , 2007 .

[31]  Björn Sjögreen,et al.  Development of low dissipative high order filter schemes for multiscale Navier-Stokes/MHD systems , 2006, J. Comput. Phys..

[32]  A. Patera,et al.  Spectral element methods for the incompressible Navier-Stokes equations , 1989 .

[33]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[35]  Paul R. Woodward,et al.  A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .

[36]  H. C. Yee,et al.  A class of high resolution explicit and implicit shock-capturing methods , 1989 .

[37]  Margot Gerritsen,et al.  Designing an efficient solution strategy for fluid flows. 1. A stable high order finite difference scheme and sharp shock resolution for the Euler equations , 1996 .

[38]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[39]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  P. Olsson Summation by parts, projections, and stability. II , 1995 .

[41]  Miguel R. Visbal,et al.  Further development of a Navier-Stokes solution procedure based on higher-order formulas , 1999 .

[42]  Björn Sjögreen,et al.  Performance of High Order Filter Methods for a Richtmyer-Meshkov Instability , 2009 .

[43]  Gilbert Strang,et al.  Wavelets and Dilation Equations: A Brief Introduction , 1989, SIAM Rev..

[44]  Björn Sjögreen,et al.  Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, II: Minimization of ∇·B Numerical Error , 2002, J. Sci. Comput..

[45]  H. C. Yee DESIGNING ADAPTIVE LOW-DISSIPATIVE HIGH ORDER SCHEMES FOR LONG-TIME INTEGRATIONS , .

[46]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.