The non-existence of certain skew-symmetric amorphous association schemes

An association scheme is amorphous if it has as many fusion schemes as possible. At the algebraic level, symmetric amorphous schemes were classified by Ivanov (1985) [12] and commutative amorphous schemes were classified by Ito et al. (1991) [11]. A scheme is called skew-symmetric if the diagonal relation is the only symmetric relation. We show the non-existence of skew-symmetric amorphous schemes with at least four classes. We also prove that non-symmetric amorphous schemes are commutative.

[1]  Alexander A. Ivanov,et al.  Investigations in Algebraic Theory of Combinatorial Objects , 1994 .

[2]  A. V. Ivanov,et al.  Amorphic Cellular Rings , 1994 .

[3]  Robert A. Liebler,et al.  Certain distance-regular digraphs and related rings of characteristic 4 , 1988, J. Comb. Theory, Ser. A.

[4]  Kaishun Wang,et al.  Four-class skew-symmetric association schemes , 2011, J. Comb. Theory, Ser. A.

[5]  Gareth Jones,et al.  Algorithmic Algebraic Combinatorics and Gröbner Bases , 2009 .

[6]  Dale M. Mesner,et al.  A New Family of Partially Balanced Incomplete Block Designs with Some Latin Square Design Properties , 1967 .

[7]  D. G. Higman Part I: Ordinary Representation Theory , 1975 .

[8]  Akihiro Munemasa,et al.  Amorphous Association Schemes over the Galois Rings of Characteristic 4 , 1991, Eur. J. Comb..

[9]  T Ito,et al.  特性4のGalois環上の非晶質関連構想 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1991 .

[10]  K. B. Reid,et al.  Doubly Regular Tournaments are Equivalent to Skew Hadamard Matrices , 1972, J. Comb. Theory, Ser. A.

[11]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[12]  Leif K. Jørgensen,et al.  Algorithmic Approach to Non-symmetric 3-class Association Schemes , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.

[13]  E. R. van Dam,et al.  Strongly Regular Decompositions of the Complete Graph , 2003 .

[14]  Frank Harary,et al.  Topics in graph theory , 1979 .

[15]  Andries E. Brouwer,et al.  Strongly regular graphs and partial geometries , 1984 .

[16]  Mikhail E. Muzychuk,et al.  Some Implications on Amorphic Association Schemes , 2010, J. Comb. Theory, Ser. A.

[17]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[18]  Jianmin Ma,et al.  Three-Class Association Schemes on Galois Rings in Characteristic 4 , 2007, Graphs Comb..

[19]  Eiichi Bannai,et al.  Character Tables of Fission Schemes and Fusion Schemes , 1993, Eur. J. Comb..

[20]  S. Vanstone,et al.  Enumeration and design , 1984 .

[21]  E. V. Dam Three-Class Association Schemes , 1999 .

[22]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[23]  I. Ponomarenko,et al.  On amorphic C-algebras , 2005, math/0511129.