MACH-NUMBER UNIFORM ASYMPTOTIC-PRESERVING GAUGE SCHEMES FOR COMPRESSIBLE FLOWS

We present novel algorithms for compressible flows that are efficient for all Mach numbers. The approach is based on several ingredients: semi-implicit schemes, the gauge decomposition of the velocity field and a second order formulation of the density equation (in the isentropic case) and of the energy equation (in the full Navier-Stokes case). Additionally, we show that our approach corresponds to a micro-macro decomposition of the model, where the macro field corresponds to the incompressible component satisfying a perturbed low Mach number limit equation and the micro field is the potential component of the velocity. Finally, we also use the conservative variables in order to obtain a proper conservative formulation of the equations when the Mach number is order unity. We successively consider the isentropic case, the full Navier-Stokes case, and the isentropic Navier-Stokes-Poisson case. In this work, we only concentrate on the question of the time discretization and show that the proposed method leads to Asymptotic Preserving schemes for compressible flows in the low Mach number limit.

[1]  Parviz Moin,et al.  A semi-implicit method for resolution of acoustic waves in low Mach number flows , 2002 .

[2]  V I Oseledets COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On a new way of writing the Navier-Stokes equation. The Hamiltonian formalism , 1989 .

[3]  E Weinan,et al.  GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS , 2003 .

[4]  Pierre Degond,et al.  An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasineutral limit , 2007, J. Comput. Phys..

[5]  John B. Bell,et al.  A projection method for combustion in the zero Mach number limit , 1993 .

[6]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[7]  Alexandre J. Chorin,et al.  Turbulence calculations in magnetization variables , 1993 .

[8]  Patrick Jenny,et al.  Convergence acceleration for computing steady-state compressible flow at low Mach numbers , 1999 .

[9]  Jian-Guo Liu,et al.  Analysis of an Asymptotic Preserving Scheme for the Euler-Poisson System in the Quasineutral Limit , 2008, SIAM J. Numer. Anal..

[10]  David L. Darmofal,et al.  The Importance of Eigenvectors for Local Preconditioners of the Euler Equations , 1996 .

[11]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[12]  E Weinan,et al.  Gauge finite element method for incompressible flows , 2000 .

[13]  Sang-Hyeon Lee,et al.  Cancellation problem of preconditioning method at low Mach numbers , 2007, J. Comput. Phys..

[14]  Luc Mieussens,et al.  Macroscopic Fluid Models with Localized Kinetic Upscaling Effects , 2006, Multiscale Model. Simul..

[15]  D. Gottlieb,et al.  Splitting methods for low Mach number Euler and Navier-Stokes equations , 1989 .

[16]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[17]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[18]  A. Fernandez-Pello,et al.  SOOTING BEHAVIOR DYNAMICS OF A NON-BUOYANT LAMINAR DIFFUSION FLAME , 2007 .

[19]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[20]  Jean-Frédéric Gerbeau,et al.  Semi-Implicit Roe-Type Fluxes for Low-Mach Number Flows , 1997 .

[21]  S. Mancini,et al.  DIFFUSION LIMIT OF THE LORENTZ MODEL: ASYMPTOTIC PRESERVING SCHEMES , 2002 .

[22]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[23]  Chunxiong Zheng,et al.  A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.

[24]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[25]  Dragan Vidovic,et al.  A superlinearly convergent Mach-uniform finite volume method for the Euler equations on staggered unstructured grids , 2006, J. Comput. Phys..

[26]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[27]  B. V. Leer,et al.  Experiments with implicit upwind methods for the Euler equations , 1985 .

[28]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[29]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[30]  Cécile Viozat,et al.  Implicit Upwind Schemes for Low Mach Number Compressible Flows , 1997 .

[31]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[32]  Pierre Degond,et al.  An asymptotically stable discretization for the Euler–Poisson system in the quasi-neutral limit , 2005 .

[33]  Robert L. Pego,et al.  An unconstrained Hamiltonian formulation for incompressible fluid flow , 1995 .

[34]  Giovanni Russo,et al.  Impulse formulation of the Euler equations: general properties and numerical methods , 1999, Journal of Fluid Mechanics.

[35]  Bertil Gustafsson,et al.  Navier-Stokes equations for almost incompressible flow , 1991 .

[36]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[37]  Weizhu Bao,et al.  Weakly compressible high-order I-stable central difference schemes for incompressible viscous flows , 2001 .

[38]  Min Tang,et al.  On the Time Splitting Spectral Method for the Complex Ginzburg-Landau Equation in the Large Time and Space Scale Limit , 2008, SIAM J. Sci. Comput..

[39]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[40]  Stanley Osher,et al.  A second order primitive preconditioner for solving all speed multi-phase flows , 2005 .

[41]  Erik Dick,et al.  A Mach-uniform algorithm: Coupled versus segregated approach , 2006, J. Comput. Phys..

[42]  M. Liou,et al.  A New Flux Splitting Scheme , 1993 .

[43]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[44]  François Golse,et al.  The Convergence of Numerical Transfer Schemes in Diffusive Regimes I: Discrete-Ordinate Method , 1999 .

[45]  E. Dick,et al.  Mach-uniformity through the coupled pressure and temperature correction algorithm , 2005 .

[46]  P. Colella,et al.  A Projection Method for Low Speed Flows , 1999 .

[47]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[48]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[49]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[50]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[51]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[52]  Cheng Wang,et al.  Convergence of gauge method for incompressible flow , 2000, Math. Comput..

[53]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[54]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[55]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[56]  Fabrice Deluzet,et al.  An asymptotically stable Particle-in-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality , 2006 .

[57]  Franck Nicoud,et al.  Conservative High-Order Finite-Difference Schemes for Low-Mach Number Flows , 2000 .

[58]  Meng-Sing Liou,et al.  Mass Flux Schemes and Connection to Shock Instability , 2000 .