A self-complexing macrocycle acting as a chromophoric receptor

Abstract The self-complexing macrocycle 4 .4PF 6 has been shown to behave as a chromophoric receptor for the 1,5-dioxynaphthalene derivative 3 , which is able to displace the hydroquinone ring out from the cavity of the self-complexing macrocycle 4 .4PF 6 and in so doing produces a 1:1 complex. This process is accompanied by an alteration in the UV/Vis absorbance which is reflected in a change in the colour of the solution — from red to purple.

[1]  Wolter F. Jager,et al.  Organic Materials for Reversible Optical Data Storage , 1993 .

[2]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[3]  A. P. Silva,et al.  Molecular fluorescent signalling with ‘fluor–spacer–receptor’ systems: approaches to sensing and switching devices via supramolecular photophysics , 1992 .

[4]  S. Shinkai,et al.  Chiral discrimination of monosaccharides using a fluorescent molecular sensor , 1995, Nature.

[5]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[6]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[7]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[8]  Shai Rubin,et al.  Control of the Structure and Functions of Biomaterials by Light , 1996 .

[9]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[10]  Gautam R. Desiraju,et al.  The crystal as a supramolecular entity , 1996 .

[11]  Abraham Shanzer,et al.  Molecular redox switches based on chemical triggering of iron translocation in triple-stranded helical complexes , 1995, Nature.

[12]  C. Dietrich-Buchecker,et al.  Synthesis of a doubly interlocked [2]-catenane. , 1994, Journal of the American Chemical Society.

[13]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[14]  David J. Williams,et al.  Molecular Meccano. 3. Constitutional and Translational Isomerism in [2]Catenanes and [n]Pseudorotaxanes , 1995 .

[15]  Michael J. Marsella,et al.  Design of chemoresistive sensory materials: polythiophene-based pseudopolyrotaxanes , 1995 .

[16]  J. Fraser Stoddart,et al.  The art and science of self-assembling molecular machines , 1996 .

[17]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[18]  J. Lehn,et al.  Self‐Assembly of a Circular Double Helicate , 1996 .

[19]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[20]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[21]  J. Fraser Stoddart,et al.  Prototype of an Optically Responsive Molecular Switch Based on Pseudorotaxane , 1996 .

[22]  David J. Williams,et al.  Simple Molecular Machines: Chemically Driven Unthreading and Rethreading of a [2]Pseudorotaxane , 1996 .

[23]  Jean-Marie Lehn,et al.  Light‐Triggered Molecular Devices: Photochemical Switching Of optical and Electrochemical Properties in Molecular Wire Type Diarylethene Species , 1995 .

[24]  J Fraser Stoddart,et al.  A Switchable Hybrid [2]-Catenane Based on Transition Metal Complexation and π-Electron Donor-Acceptor Interactions. , 1996, Journal of the American Chemical Society.

[25]  Jean-Marie Lehn,et al.  A Dual‐Mode Molecular Switching Device: Bisphenolic Diarylethenes with Integrated Photochromic and Electrochromic Properties , 1995 .

[26]  Christopher L. Brown,et al.  Molecular Meccano. 2. Self-Assembly of [n]Catenanes , 1995 .

[27]  D. Nocera,et al.  A SUPRAMOLECULAR CHEMOSENSOR FOR AROMATIC HYDROCARBONS , 1996 .