Incompressible hypersurface, positive scalar curvature and positive mass theorem

In this paper, we prove for n ≤ 7 that if a differentiable nmanifold contains a relatively incompressible essential hypersurface in some class Cdeg, then it admits no complete metric with positive scalar curvature. Based on this result, we show for n ≤ 7 that surgeries between orientable n-manifolds and n-torus along incompressible sub-torus with codimension no less than 2 still preserve the obstruction for complete metrics with positive scalar curvature. As an application, we establish positive mass theorem with incompressible conditions for asymptotically flat/conical manifolds with flat fiber F (including ALF and ALG manifolds), which can be viewed as a generalization of the classical positive mass theorem from [52] and [55]. Finally, we investigate Gromov’s fill-in problem and bound the total mean curvature for nonnegative scalar curvature fill-ins of flat 2-toruses (an optimal bound is obtained for product 2-toruses). This confirms the validity of Mantoulidis-Miao’s definition of generalized Brown-York mass in [39] for flat 2-toruses.

[1]  Yuguang Shi,et al.  Total mean curvature of the boundary and nonnegative scalar curvature fill-ins , 2020, Journal für die reine und angewandte Mathematik (Crelles Journal).

[2]  Misha Gromov,et al.  Area and Gauss-Bonnet inequalities with scalar curvature , 2021, 2112.07245.

[3]  E. Witten A new proof of the positive energy theorem , 1981 .

[4]  J. Lohkamp Scalar curvature and hammocks , 1999 .

[5]  J. Cheeger,et al.  The splitting theorem for manifolds of nonnegative Ricci curvature , 1971 .

[6]  Christos Mantoulidis,et al.  Positive scalar curvature with skeleton singularities , 2017, Mathematische Annalen.

[7]  M. Gromov No metrics with Positive Scalar Curvatures on Aspherical 5-Manifolds , 2020, 2009.05332.

[8]  Guodong Wei,et al.  On the fill-in of nonnegative scalar curvature metrics , 2019, Mathematische Annalen.

[9]  M. Gromov,et al.  Positive scalar curvature and the Dirac operator on complete riemannian manifolds , 1983 .

[10]  A. Hanson,et al.  SELF-DUAL SOLUTIONS TO EUCLIDEAN GRAVITY , 1979 .

[11]  L. Bieberbach,et al.  Über die Bewegungsgruppen der Euklidischen Räume , 1911 .

[12]  P. Kronheimer The construction of ALE spaces as hyper-Kähler quotients , 1989 .

[13]  M. Simon,et al.  Deformation of $C^0$ Riemannian metrics in the direction of their Ricci curvature , 2002 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  N. Hitchin,et al.  Gravitational Instantons of Type Dk , 2003, hep-th/0310084.

[16]  Tosio Kato Perturbation theory for linear operators , 1966 .

[17]  Jintian Zhu Rigidity results for complete manifolds with nonnegative scalar curvature , 2020, 2008.07028.

[18]  A. V. Pogorelov Some results on surface theory in the large , 1964 .

[19]  ON THE TOPOLOGY OF CERTAIN MATRIX GROUPS , 2018 .

[20]  R. Bartnik Quasi-spherical metrics and prescribed scalar curvature , 1993 .

[21]  Jintian Zhu Width estimate and doubly warped product , 2020, 2003.01315.

[22]  Shing-Tung Yau,et al.  Existence of incompressible minimal surfaces and the topology of three - dimensional manifolds with , 1979 .

[23]  J. Rosenberg,et al.  C∗-algebras, positive scalar curvature, and the novikov conjecture—III , 1986 .

[24]  E. Barbosa,et al.  Topological obstructions to nonnegative scalar curvature and mean convex boundary , 2018, 1811.08519.

[25]  N. Smale Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds , 1993 .

[26]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[27]  Yuguang Shi,et al.  Scalar curvature and singular metrics , 2016, 1611.04056.

[28]  S. Yau,et al.  Positive scalar curvature and minimal hypersurface singularities , 2017, Surveys in Differential Geometry.

[29]  M. Dahl The positive mass theorem for ALE manifolds , 1997 .

[30]  V. Minerbe A Mass for ALF Manifolds , 2008, 0803.2873.

[31]  T. Richard On the 2-Systole of Stretched Enough Positive Scalar Curvature Metrics on S 2 × S 2 , 2021 .

[32]  M. Gromov,et al.  The Classification of Simply Connected Manifolds of Positive Scalar Curvature Author ( s ) : , 2010 .

[33]  M. Gromov Metric Inequalities with Scalar Curvature , 2017, Geometric and Functional Analysis.

[34]  S. Yau,et al.  The Structure of Manifolds with Positive Scalar Curvature , 1987 .

[35]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[36]  Ugo Gianazza,et al.  On the Harnack inequality for non-divergence parabolic equations , 2021 .

[37]  M. Gromov Scalar Curvature of Manifolds with Boundaries: Natural Questions and Artificial Constructions , 2018, 1811.04311.

[38]  Shing-Tung Yau,et al.  On the proof of the positive mass conjecture in general relativity , 1979 .

[39]  R. Ho Algebraic Topology , 2022 .

[40]  S. Yau,et al.  COMPLETE THREE DIMENSIONAL MANIFOLDS WITH POSITIVE RICCI CURVATURE AND SCALAR CURVATURE , 1982 .

[41]  Positive Mass Theorem and the Boundary Behaviors of Compact Manifolds with Nonnegative Scalar Curvature , 2002, math/0301047.

[42]  Chao Li,et al.  Classifying sufficiently connected PSC manifolds in $4$ and $5$ dimensions , 2021 .

[43]  A. Fischer,et al.  The Calabi construction for compact Ricci flat Riemannian manifolds , 1974 .

[44]  C. LeBrun Counter-examples to the generalized positive action conjecture , 1988 .

[45]  N. Murchadha,et al.  Quasilocal Energy in General Relativity , 2009, 0905.0647.

[46]  L. Bieberbach,et al.  Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich , 1912 .

[47]  Positive Mass Theorem on Manifolds admitting Corners along a Hypersurface , 2002, math-ph/0212025.

[48]  Shing-Tung Yau,et al.  The Positive Mass Theorem with Arbitrary Ends , 2021, 2103.02744.

[49]  L. Nirenberg The Weyl and Minkowski problems in differential geometry in the large , 1953 .

[50]  Christos Mantoulidis,et al.  Total Mean Curvature, Scalar Curvature, and a Variational Analog of Brown–York Mass , 2016, 1604.00927.

[51]  A. Kapustin,et al.  Hyper-Kähler metrics from periodic monopoles , 2001, hep-th/0109141.

[52]  S. Yau,et al.  On the structure of manifolds with positive scalar curvature , 1979 .

[53]  Yuguang Shi,et al.  On Geometric Problems Related to Brown-York and Liu-Yau Quasilocal Mass , 2009, 0906.5451.

[54]  Yuguang Shi,et al.  On the rigidity of Riemannian–Penrose inequality for asymptotically flat 3-manifolds with corners , 2017, 1708.06373.

[55]  J. Moser On Harnack's theorem for elliptic differential equations† , 1961 .

[56]  J. Kazdan Deformation to positive scalar curvature on complete manifolds , 1982 .

[57]  S. Hawking,et al.  Symmetry Breaking by Instantons in Supergravity , 1978 .

[58]  Gábor Székelyhidi,et al.  On the Positive Mass Theorem for Manifolds with Corners , 2011, 1104.2258.

[59]  Chao Li,et al.  Generalized soap bubbles and the topology of manifolds with positive scalar curvature , 2020, 2008.11888.

[60]  R. Bartnik The mass of an asymptotically flat manifold , 1986 .