Heterologous prime-boost immunization with ChAdOx1-S and BNT162b2: reactogenicity and immunogenicity in a prospective cohort study

[1]  P. Austin,et al.  Estimated Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes , 2022, JAMA network open.

[2]  B. Gärtner,et al.  Comparative immunogenicity and reactogenicity of heterologous ChAdOx1-nCoV-19-priming and BNT162b2 or mRNA-1273-boosting with homologous COVID-19 vaccine regimens , 2022, Nature Communications.

[3]  S. Hoehl,et al.  Limited neutralisation of the SARS-CoV-2 Omicron subvariants BA.1 and BA.2 by convalescent and vaccine serum and monoclonal antibodies , 2022, eBioMedicine.

[4]  K. Überla,et al.  Reactogenicity after heterologous and homologous COVID-19 prime-boost vaccination regimens: descriptive interim results of a comparative observational cohort study , 2022, BMC Infectious Diseases.

[5]  A. Sette,et al.  Heterologous ChAdOx1/BNT162b2 vaccination induces stronger immune response than homologous ChAdOx1 vaccination: The pragmatic, multi-center, three-arm, partially randomized HEVACC trial , 2022, eBioMedicine.

[6]  Yunxian Yu,et al.  Immunogenicity and Safety of Homologous and Heterologous Prime–Boost Immunization with COVID-19 Vaccine: Systematic Review and Meta-Analysis , 2022, Vaccines.

[7]  W. Ko,et al.  Immunogenicity and safety of homologous and heterologous ChAdOx1-S and mRNA-1273 vaccinations in healthy adults in Taiwan , 2022, Journal of Clinical Virology.

[8]  Gheyath K Nasrallah,et al.  Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar , 2022, Nature Communications.

[9]  T. Leino,et al.  High vaccine effectiveness against severe COVID-19 in the elderly in Finland before and after the emergence of Omicron , 2022, BMC Infectious Diseases.

[10]  C. Knabbe,et al.  Cellular and Humoral Immune Response to a Third Dose of BNT162b2 COVID-19 Vaccine – A Prospective Observational Study , 2022, Frontiers in Immunology.

[11]  C. Lambert,et al.  Comparative T and B immune responses of four different anti-COVID-19 vaccine strategies 6 months after vaccination , 2022, Journal of Infection.

[12]  M. Koopmans,et al.  Divergent SARS CoV-2 Omicron-reactive T- and B cell responses in COVID-19 vaccine recipients , 2022, Science Immunology.

[13]  A. Sette,et al.  T cell responses to SARS-CoV-2 spike cross-recognize Omicron , 2022, Nature.

[14]  J. Mascola,et al.  SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination , 2022, The New England journal of medicine.

[15]  D. Montefiori,et al.  Homologous and Heterologous Covid-19 Booster Vaccinations , 2022, The New England journal of medicine.

[16]  William F. Fadel,et al.  Effectiveness of a Third Dose of mRNA Vaccines Against COVID-19–Associated Emergency Department and Urgent Care Encounters and Hospitalizations Among Adults During Periods of Delta and Omicron Variant Predominance — VISION Network, 10 States, August 2021–January 2022 , 2022, MMWR. Morbidity and mortality weekly report.

[17]  H. Fickenscher,et al.  Humoral immune response after different SARS-CoV-2 vaccination regimens , 2022, BMC Medicine.

[18]  Huynh Ngoc Phuoc,et al.  Reactogenicity and immunogenicity of heterologous prime-boost immunization with COVID-19 vaccine , 2022, Biomedicine & Pharmacotherapy.

[19]  A. Sette,et al.  Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant , 2022, Nature Medicine.

[20]  Jie-Li Hu,et al.  Increased immune escape of the new SARS-CoV-2 variant of concern Omicron , 2021, Cellular & Molecular Immunology.

[21]  H. Whitaker,et al.  Real-world data on immune responses following heterologous prime-boost COVID-19 vaccination schedule with Pfizer and AstraZeneca vaccines in England , 2021, Journal of Infection.

[22]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[23]  Liyuan Liu,et al.  Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2 , 2021, Nature.

[24]  S. Hoehl,et al.  Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and monoclonal antibodies , 2021, medRxiv.

[25]  M. Davenport,et al.  Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis , 2021, The Lancet Microbe.

[26]  Ständige Impfkommission Beschluss der STIKO zur 10. Aktualisierung der COVID-19-Impfempfehlung , 2021 .

[27]  F. Huang,et al.  To mix or not to mix? A rapid systematic review of heterologous prime–boost covid-19 vaccination , 2021, Expert review of vaccines.

[28]  V. Libri,et al.  Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial , 2021, The Lancet.

[29]  M. Zeier,et al.  Heterologous ChAdOx1 nCoV-19/BNT162b2 Prime-Boost Vaccination Induces Strong Humoral Responses among Health Care Workers , 2021, Vaccines.

[30]  C. von Kalle,et al.  Safety, reactogenicity, and immunogenicity of homologous and heterologous prime-boost immunisation with ChAdOx1 nCoV-19 and BNT162b2: a prospective cohort study , 2021, The Lancet Respiratory Medicine.

[31]  B. Gärtner,et al.  Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination , 2021, Nature Medicine.

[32]  S. Ladhani,et al.  Real-world data shows increased reactogenicity in adults after heterologous compared to homologous prime-boost COVID-19 vaccination, March−June 2021, England , 2021, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[33]  A. Borobia,et al.  Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial , 2021, The Lancet.

[34]  C. Rice,et al.  Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection , 2021, Nature.

[35]  S. Hoehl,et al.  Limited Neutralization of Authentic Severe Acute Respiratory Syndrome Coronavirus 2 Variants Carrying E484K In Vitro , 2021, The Journal of Infectious Diseases.

[36]  M. Davenport,et al.  Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection , 2021, Nature Medicine.

[37]  M. Snape,et al.  Heterologous prime-boost COVID-19 vaccination: initial reactogenicity data , 2021, The Lancet.

[38]  S. Ciesek,et al.  Utility of Different Surrogate Enzyme-Linked Immunosorbent Assays (sELISAs) for Detection of SARS-CoV-2 Neutralizing Antibodies , 2021, Journal of clinical medicine.

[39]  A. Mehta,et al.  Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells , 2021, medRxiv.

[40]  J. Mascola,et al.  Antibody Persistence through 6 Months after the Second Dose of mRNA-1273 Vaccine for Covid-19 , 2021, The New England journal of medicine.

[41]  S. Schulz,et al.  Beschluss der STIKO zur 3. Aktualisierung der COVID-19-Impfempfehlung und die dazugehörige wissenschaftliche Begründung , 2021 .

[42]  Gavin J. D. Smith,et al.  Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients , 2021, Cell Reports.

[43]  John D. Davis,et al.  REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19 , 2020, The New England journal of medicine.

[44]  J. Greenbaum,et al.  Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity , 2020, Cell.

[45]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[46]  E. Kristoffersen,et al.  [Real world data]. , 2017, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.