Conclusive quantum steering with superconducting transition-edge sensors

Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ∼62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.

[1]  N. Treps,et al.  An experimental investigation of criteria for continuous variable entanglement , 2003, Postconference Digest Quantum Electronics and Laser Science, 2003. QELS..

[2]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[3]  Marco Fiorentino,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, QELS 2006.

[4]  Erik Lucero,et al.  Violation of Bell's inequality in Josephson phase qubits , 2009, Nature.

[5]  Christian Kurtsiefer,et al.  Full-field implementation of a perfect eavesdropper on a quantum cryptography system. , 2010, Nature communications.

[6]  A. EINsTEIN,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete ' ? , 2011 .

[7]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[8]  E. Schrödinger Die gegenwärtige Situation in der Quantenmechanik , 2005, Naturwissenschaften.

[9]  Taehyun Kim,et al.  Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[10]  Andrew Brennan,et al.  Necessary and Sufficient Conditions , 2018, Logic in Wonderland.

[11]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[12]  E. Polzik,et al.  Spin squeezed atoms: a macroscopic entangled ensemble created by light , 1999 .

[13]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.

[15]  Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber. , 2001, Physical review letters.

[16]  Xiongfeng Ma,et al.  Improved data post-processing in quantum key distribution and application to loss thresholds in device independent QKD , 2011, Quantum Inf. Comput..

[17]  Vadim Makarov,et al.  Superlinear threshold detectors in quantum cryptography , 2011, 1106.2119.

[18]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[19]  A. Winter,et al.  Higher entropic uncertainty relations for anti-commuting observables , 2007, 0710.1185.

[20]  Tobias Moroder,et al.  Entanglement verification with realistic measurement devices via squashing operations , 2009, 0909.4212.

[21]  Rupert Ursin,et al.  Violation of local realism with freedom of choice , 2008, Proceedings of the National Academy of Sciences.

[22]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[23]  S. Wehner,et al.  The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics , 2010, Science.

[24]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[25]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[26]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[27]  Ryan S. Bennink,et al.  Optimal collinear Gaussian beams for spontaneous parametric down-conversion , 2010, 1003.3810.

[28]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[29]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[30]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[31]  Rupert Ursin,et al.  Loophole-free Quantum Steering , 2011 .

[32]  H. Bachor,et al.  Spin entanglement, decoherence and Bohm's EPR paradox. , 2007, Optics express.

[33]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[34]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[35]  Aaron J. Miller,et al.  Counting near-infrared single-photons with 95% efficiency. , 2008, Optics express.

[36]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.