The influence of a ferrofluid in the presence of an external rotating magnetic field on the growth rate and cell metabolic activity of a wine yeast strain

[1]  K. Fijałkowski,et al.  Effects of rotating magnetic field exposure on the functional parameters of different species of bacteria , 2015, Electromagnetic biology and medicine.

[2]  Xuecheng Chen,et al.  Chemical and magnetic functionalization of graphene oxide as a route to enhance its biocompatibility , 2014, Nanoscale Research Letters.

[3]  Michael C. Jewett,et al.  Evaluating fermentation effects on cell growth and crude extract metabolic activity for improved yeast cell-free protein synthesis , 2014 .

[4]  S. Kralj,et al.  A new method for the rapid separation of magnetized yeast in sparkling wine , 2014 .

[5]  K. Fijałkowski,et al.  Effects of 50 Hz rotating magnetic field on the viability of Escherichia coli and Staphylococcus aureus , 2014, Electromagnetic biology and medicine.

[6]  Intawat Nookaew,et al.  Mapping Condition-Dependent Regulation of Lipid Metabolism in Saccharomyces cerevisiae , 2013, G3: Genes, Genomes, Genetics.

[7]  P. Nawrotek,et al.  The Effects of Rotating Magnetic Field on Growth Rate, Cell Metabolic Activity and Biofilm Formation by Staphylococcus Aureus and Escherichia Coli , 2013 .

[8]  F. Larachi,et al.  Giant effective liquid-self diffusion in stagnant liquids by magnetic nanomixing , 2013 .

[9]  S. Gorobets,et al.  Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties , 2013 .

[10]  L. Krähenbühl,et al.  Assessment of 0.5 T static field exposure effect on yeast and HEK cells using electrorotation. , 2013, Biophysical journal.

[11]  Dong Seok Yang,et al.  Local Structure and Magnetic Properties of Fe-Mn Nanocrystalline Alloys Fabricated by Mechanical Alloying Technique as a Function of Milling Time , 2013 .

[12]  Nguyen T. K. Thanh,et al.  Magnetic Nanoparticles : From Fabrication to Clinical Applications , 2012 .

[13]  E. Matallana,et al.  Recent Advances in Yeast Biomass Production , 2011 .

[14]  R. Rakoczy,et al.  Studies of a mixing process induced by a transverse rotating magnetic field , 2011 .

[15]  J. Hristov,et al.  Critical Analysis of Data Concerning Saccharomyces Cerevisiae Free-Cell Proliferations and Fermentations Assisted by Magnetic and Electromagnetic Fields , 2011, 1103.0175.

[16]  Z. Salvadó,et al.  Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces , 2011, Applied and Environmental Microbiology.

[17]  Yunsong Zhang,et al.  Preparation and characterization of baker's yeast modified by nano-Fe3O4: Application of biosorption of methyl violet in aqueous solution , 2010 .

[18]  L. O. Santos,et al.  Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae , 2010 .

[19]  F. Sendra-Portero,et al.  Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair , 2010, International journal of radiation biology.

[20]  R. Rakoczy Enhancement of solid dissolution process under the influence of rotating magnetic field , 2010 .

[21]  J. Hristov Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses , 2010 .

[22]  John R Yates,et al.  Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator , 2009, Molecular systems biology.

[23]  E. Khan,et al.  Effects of cell entrapment on growth rate and metabolic activity of pure cultures commonly found in biological wastewater treatment , 2009 .

[24]  I. Safarik,et al.  Ferrofluid modified Saccharomyces cerevisiae cells for biocatalysis , 2009 .

[25]  P. Hore,et al.  Chemical magnetoreception in birds: The radical pair mechanism , 2009, Proceedings of the National Academy of Sciences.

[26]  Amparo Querol,et al.  Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. , 2008, International journal of food microbiology.

[27]  R. Hong,et al.  Rheological properties of water-based Fe3O4 ferrofluids , 2007 .

[28]  Jianhua Li,et al.  Comparison of schemes for preparing magnetic Fe3O4 nanoparticles , 2007 .

[29]  I. Safarik,et al.  Magnetically modified microbial cells: A new type of magnetic adsorbents , 2007 .

[30]  L. Fojt,et al.  Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. , 2007, Bioelectrochemistry.

[31]  M. Al-Shannag,et al.  Separation of yeast cells from aqueous solutions using magnetically stabilized fluidized beds , 2006, Letters in applied microbiology.

[32]  A. Bekatorou,et al.  PRODUCTION OF FOOD GRADE YEAST , 2006 .

[33]  Duccio Cavalieri,et al.  Extremely Low-Frequency Electromagnetic Fields do not Affect DNA Damage and Gene Expression Profiles of Yeast and Human Lymphocytes , 2005, Radiation research.

[34]  C. Scherer,et al.  Ferrofluids: properties and applications , 2005 .

[35]  Ivo Safarik,et al.  Ferrofluid-modified plant-based materials as adsorbents for batch separation of selected biologically active compounds and xenobiotics , 2005 .

[36]  Shoogo Ueno,et al.  Strong static magnetic field effects on yeast proliferation and distribution. , 2004, Bioelectrochemistry.

[37]  M. Ruiz-Gómez,et al.  Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. , 2004, Bioelectrochemistry.

[38]  S. Çelebi,et al.  Influence of magnetic field on the kinetics of activated sludge , 2004, Environmental technology.

[39]  J. M. Schuurmans,et al.  The Metabolic Response of Saccharomyces Cerevisiae to Continuous Heat Stress , 2004, Molecular Biology Reports.

[40]  S. Odenbach Ferrofluids—magnetically controlled suspensions , 2003 .

[41]  M. Trushin Studies on distant regulation of bacterial growth and light emission. , 2003, Microbiology.

[42]  N. A. Brusentsov,et al.  Magnetic fluid hyperthermia of the mouse experimental tumor , 2002 .

[43]  Al-Qodah,et al.  Modeling of antibiotics production in magneto three-phase airlift fermenter. , 2001, Biochemical engineering journal.

[44]  S. Loening,et al.  Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia , 2001 .

[45]  A. Gupthar,et al.  Evaluation of the maximum specific growth rate of a yeast indicating non-linear growth trends in batch culture , 2000 .

[46]  António A. Vicente,et al.  Applications of yeast flocculation in biotechnological processes , 2000 .

[47]  Z. Al-Qodah Hydrodynamic behaviour of a magneto airlift column in a transverse magnetic field , 2000 .

[48]  R. L. Valentine,et al.  The effect of static magnetic fields on biological systems: Implications for enhanced biodegradation , 1997 .

[49]  H. Berg,et al.  Proliferation response of yeast saccharomyces cerevisiae on electromagnetic field parameters , 1997 .

[50]  H. Berg,et al.  Electrostimulation of yeast proliferation , 1995 .

[51]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[52]  N. R. Merritt THE INFLUENCE OF TEMPERATURE ON SOME PROPERTIES OF YEAST , 1966 .