An empirical model for ionic wind generation by a needle-to-cylinder dc corona discharge

Abstract We present the results of an experimental study on ionic wind generation by a needle-to-cylinder dc corona discharge. A strong electrical field in the air generates air flow driven by the motion of ionized gas molecules along electric field lines. We measured the ionic wind velocity and discharge current with respect to various electrode geometries, distances between electrodes, and applied voltages. Our measurements suggest an empirical model for the ionic wind velocity as a function of the geometric factors of the collector electrode and the applied electric potential, which is useful for designing ionic wind cooling systems for small electronics.

[1]  S. M. You,et al.  EXPERIMENTAL POOL BOILING HEAT TRANSFER STUDY OF THE NANOPOROUS COATING IN VARIOUS FLUIDS , 2012 .

[2]  M. Rickard,et al.  Inducing gas flow and swirl in tubes using ionic wind from corona discharges , 2006 .

[3]  K. Castor,et al.  Electric wind characterisation in negative point-to-plane corona discharges in air , 2003 .

[4]  Kwan Hyoung Kang,et al.  Ion wind generation and the application to cooling , 2012 .

[5]  E. Moreau,et al.  Enhancing the mechanical efficiency of electric wind in corona discharges , 2008 .

[6]  Lin Zhao,et al.  EHD flow in air produced by electric corona discharge in pin–plate configuration , 2005 .

[7]  Eric Moreau,et al.  Airflow control by non-thermal plasma actuators , 2007 .

[8]  R. Ianconescu,et al.  An analysis of the Brown–Biefeld effect , 2010, 1011.1393.

[9]  H. Kawamoto,et al.  Flow distribution and pressure of air due to ionic wind in pin-to-plate corona discharge system , 2006 .

[10]  R. S. Sigmond The unipolar corona space charge flow problem , 1986 .

[11]  M. Rickard,et al.  Maximizing ion-driven gas flows , 2006 .

[12]  Myron Robinson,et al.  Movement of air in the electric wind of the corona discharge , 1961, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[13]  William K. Thompson,et al.  An Investigation of Ionic Wind Propulsion , 2009 .

[14]  G. F. Leal Ferreira,et al.  Point-to-plane corona: current-voltage characteristics for positive and negative polarity with evidence of an electronic component , 1986 .

[15]  J. Townsend,et al.  Electricity in gases , 2022 .

[16]  F. C. Lai,et al.  Electrohydrodynamic gas pump in a vertical tube , 2009 .

[17]  Kimio Yamada,et al.  An empirical formula for negative corona discharge current in point-grid electrode geometry , 2004 .

[18]  T. Lin,et al.  The Characteristics of Ionic Wind and Its Effect on Electrostatic Precipitators , 1994 .

[19]  James Q. Feng An analysis of corona currents between two concentric cylindrical electrodes , 1999 .

[20]  Jungho Hwang,et al.  Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration , 2010 .

[21]  Pierluigi Giubbilini,et al.  The current‐voltage characteristics of point‐to‐ring corona , 1988 .

[22]  O. Stuetzer,et al.  Ion Drag Pressure Generation , 1959 .

[23]  A. P. Chattock XLIV. On the velocity and mass of the ions in the electric wind in air , 1899 .

[24]  E. Moreau,et al.  Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure , 2013 .

[25]  R. S. Sigmond Simple approximate treatment of unipolar space‐charge‐dominated coronas: The Warburg law and the saturation current , 1982 .

[26]  D. Colás,et al.  Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure , 2010 .

[27]  E. Moreau,et al.  Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control , 2007 .

[28]  Jen-Shih Chang,et al.  Corona discharge processes , 1991 .

[29]  P. S. Moller,et al.  Ion-Neutral Propulsion in Atmospheric Media , 1967 .

[30]  N. C. Tien,et al.  Optimized and microfabricated ionic wind pump array as a next generation solution for electronics cooling systems , 2012, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[31]  Hui Zhang,et al.  A general empirical formula of current–voltage characteristics for point-to-plane geometry corona discharges , 2008 .

[32]  E. J. Shaughnessy,et al.  Electrohydrodynamic Pressure of the Point-to-Plane Corona Discharge , 1991 .