Functional properties of Yttrium Iron Garnett thin films on graphene-coated Gd3Ga5O12 for remote epitaxial transfer

[1]  Jens Martin,et al.  The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures , 2021 .

[2]  N. Sun,et al.  Magnetoelectric materials and devices , 2021 .

[3]  Alexei D. Matyushov,et al.  Acoustically Driven Ferromagnetic Resonance in Diverse Ferromagnetic Thin Films , 2021, IEEE Transactions on Magnetics.

[4]  M. N. Smirnova,et al.  Growth and Properties of Y3Fe5O12 Films on LiNbO3 Substrates , 2020, Inorganic Materials.

[5]  E. Papaioannou,et al.  Ultra Thin Films of Yttrium Iron Garnet with Very Low Damping: A Review , 2020, physica status solidi (b).

[6]  Sang-Hoon Bae,et al.  Heterogeneous integration of single-crystalline complex-oxide membranes , 2020, Nature.

[7]  C. Nan,et al.  Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions , 2008, Progress in Advanced Dielectrics.

[8]  Sang-Hoon Bae,et al.  Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices , 2019, Nature Electronics.

[9]  P. Shah,et al.  Optimization of acoustically-driven ferromagnetic resonance devices , 2019, Journal of Applied Physics.

[10]  Krishnamurthy Mahalingam,et al.  Magnetostriction, Soft Magnetism, and Microwave Properties in Co−Fe−C Alloy Films , 2019, Physical Review Applied.

[11]  A. Tanaka,et al.  Local spin moments, valency, and long-range magnetic order in monocrystalline and ultrathin films of Y3Fe5O12 garnet , 2019, Physical Review B.

[12]  John G. Jones,et al.  Soft Magnetism, Magnetostriction, and Microwave Properties of Fe-Ga-C Alloy Films , 2019, IEEE Magnetics Letters.

[13]  Huaiwu Zhang,et al.  Liquid phase epitaxy magnetic garnet films and their applications , 2018, Chinese Physics B.

[14]  Fengyuan Yang,et al.  FMR-driven spin pumping in Y3Fe5O12-based structures , 2018, Journal of Physics D: Applied Physics.

[15]  S. Dong,et al.  Review of multi-layered magnetoelectric composite materials and devices applications , 2018 .

[16]  Jiangbin Wu,et al.  Raman spectroscopy of graphene-based materials and its applications in related devices. , 2018, Chemical Society reviews.

[17]  K. Rosso,et al.  First-Principles Fe L2,3-Edge and O K-Edge XANES and XMCD Spectra for Iron Oxides. , 2017, The journal of physical chemistry. A.

[18]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[19]  H. Huebl,et al.  Temperature-dependent magnetic damping of yttrium iron garnet spheres , 2017, 1703.09444.

[20]  D. McComb,et al.  Exceptionally high magnetization of stoichiometric Y3Fe5O12 epitaxial films grown on Gd3Ga5O12 , 2016 .

[21]  Angus J. Wilkinson,et al.  Tutorial: Crystal orientations and EBSD — Or which way is up? , 2016 .

[22]  Shashank Priya,et al.  Status and Perspectives of Multiferroic Magnetoelectric Composite Materials and Applications , 2016 .

[23]  John G. Jones,et al.  Pseudomorphic Yttrium Iron Garnet Thin Films With Low Damping and Inhomogeneous Linewidth Broadening , 2015, IEEE Magnetics Letters.

[24]  Gerhard Jakob,et al.  Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization , 2014 .

[25]  U. Schmid,et al.  High performance AlScN thin film based surface acoustic wave devices with large electromechanical coupling coefficient , 2014 .

[26]  P. Li,et al.  Nanometer-Thick Yttrium Iron Garnet Films With Extremely Low Damping , 2014, IEEE Magnetics Letters.

[27]  J. McChesney,et al.  The intermediate energy X-ray beamline at the APS , 2014 .

[28]  D. Viehland,et al.  Electrical and thermal control of magnetic coercive field in ferromagnetic/ferroelectric heterostructures , 2014 .

[29]  D. Basko,et al.  Raman spectroscopy as a versatile tool for studying the properties of graphene. , 2013, Nature nanotechnology.

[30]  A. Hoffmann,et al.  Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films , 2012 .

[31]  R. Gross,et al.  Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment , 2012, 1208.0001.

[32]  C. Nan,et al.  Recent Progress in Multiferroic Magnetoelectric Composites: from Bulk to Thin Films , 2011, Advanced materials.

[33]  B. Wagner,et al.  Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites , 2010 .

[34]  D. Grundler,et al.  Magnonics , 2010 .

[35]  Suman Datta,et al.  Enhancing the magnetoelectric response of Metglas/polyvinylidene fluoride laminates by exploiting the flux concentration effect , 2009 .

[36]  Nian X. Sun,et al.  Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films , 2007 .

[37]  Michael L. Schneider,et al.  Ferromagnetic resonance linewidth in metallic thin films: Comparison of measurement methods , 2006 .

[38]  Wolfgang Brand,et al.  Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators , 2003 .

[39]  Yicheng Lu,et al.  Epitaxial ZnO piezoelectric thin films for saw filters , 1999 .

[40]  F. D. Groot,et al.  X-ray absorption and dichroism of transition metals and their compounds , 1994 .

[41]  J. Sinfelt,et al.  X-ray absorption edge studies of the electronic structure of metal catalysts , 1993 .

[42]  H. Glass,et al.  Attainment of the intrinsic FMR linewidth in yttrium iron garnet films grown by liquid phase epitaxy , 1976 .

[43]  A. Clark,et al.  Saturation Magnetostriction of Single‐Crystal YIG , 1963 .