On the theory of stress-assisted diffusion, II

SummarySimilarity and general steady-state solutions of a recently developed strees-assisted diffusion theory are derived. General transient solutions are obtained analytically for certain classes of stress distributions. For general stress distributions a perturbation method is employed to produce transient solutions. Under appropriate conditions the derived solutions are reduced to previous formulae that have unsystematically appeared in the literature. Examples of interesting crack problems involving stress singularities as well as the elimination of singularities are considered. An equilibrium solution is utilized together with a straightforward physical argument to produce rationally two empirical formulae previously proposed in the literature to model embrittlement and stress corrosion cracking phenomena. This solution is further used to model embrittlement and stress corrosion cracking data more successfully than previous attempts. An appendix on certain preliminary elastodiffusive fracture criteria is given.

[1]  Elias C. Aifantis,et al.  On the problem of diffusion in solids , 1980 .

[2]  A. Kufudakis,et al.  Diffusivity of hydrogen in platinum and the diffusionelastic phenomenon , 1979 .

[3]  Robert E. Reed-Hill,et al.  Physical Metallurgy Principles , 1972 .

[4]  H. W. Liu Stress-Corrosion Cracking and the Interaction Between Crack-Tip Stress Field and Solute Atoms , 1970 .

[5]  S. Timoshenko,et al.  Theory of Elasticity (3rd ed.) , 1970 .

[6]  Anthony G. Evans,et al.  A method for evaluating the time-dependent failure characteristics of brittle materials — and its application to polycrystalline alumina , 1972 .

[7]  K. Yvon,et al.  Constitution et structure des alliages du gallium avec les métaux de transition , 1979 .

[8]  J. Verhoeven Fundamentals of Physical Metallurgy , 1975 .

[9]  W. Gerberich,et al.  Hydrogen-controlled cracking—An approach to threshold stress intensity , 1975 .

[10]  James M. Hill Plane steady solutions for stress-assisted diffusion , 1979 .

[11]  G. Alefeld,et al.  Elastic Diffusion Relaxation , 1970 .

[12]  E. Aifantis Diffusion of a perfect fluid in a linear elastic stress field , 1976 .

[13]  M. Vlcek,et al.  A modification of the deflection method for the study of diffusion-elastic phenomena in plated layers , 1976 .

[14]  J. Cermák,et al.  Diffusion-elastic phenomenon and diffusivity of hydrogen in nickel , 1976 .

[15]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[16]  E. Aifantis,et al.  A new form of exact solutions for mode I, II, III crack problems and implications , 1978 .

[17]  H. Peisl,et al.  Lattice strains due to hydrogen in metals , 1978 .

[18]  F. Ham Stress‐Assisted Precipitation on Dislocations , 1959 .

[19]  Paul Shewmon,et al.  Diffusion in Solids , 2016 .

[20]  I. Bernstein,et al.  Stress induced movement of hydrogen in zirconium alloys , 1974 .

[21]  J. Čermák Diffusion-elastic phenomena I. Theory of diffusion-induced elastic bending , 1973 .

[22]  R. A. Oriani,et al.  The Thermodynamics of Stressed Solids , 1966 .

[23]  L. Girifalco,et al.  Point Defects and Diffusion in Strained Metals , 1967 .

[24]  J. D. Eshelby Distortion of a Crystal by Point Imperfections , 1954 .

[25]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[26]  I. S. Habib,et al.  Engineering Analysis Methods , 1977 .

[27]  E. Aifantis,et al.  Gaseous diffusion in a stressed-thermoelastic solid. Part II: Thermodynamic structure and transport theory , 1977 .

[28]  A. Kufudakis,et al.  Diffusion-elastic phenomena II. Experiments , 1973 .

[29]  E. Aifantis,et al.  Diffusion of a gas in a linear elastic solid , 1978 .

[30]  H. V. Leeuwen Plateau Velocity of SCC in High Strength Steel — A Quantitative Treatment , 1975 .

[31]  H. V. Leeuwen On the Decohesion Model of Hydrogen Embrittlement , 1976 .

[32]  A. S. Krausz The theory of thermally activated processes in brittle stress corrosion cracking , 1979 .

[33]  E. Kamke Differentialgleichungen : Lösungsmethoden und Lösungen , 1977 .

[34]  E. Fick S. Flügge: Handbuch der Physik, Band XXV/2a: Licht und Materie Ia. Herausgegeben von S. Flügge und L. Genzel. Springer-Verlag, Berlin, Heidelberg, New York 1967. 338 Seiten. Preis: DM 98,–. , 1968 .

[35]  H. Horner,et al.  Elastic interaction and phase transition in coherent metal-hydrogen alloys , 1974 .

[36]  E. Aifantis,et al.  Gaseous diffusion in a stressed-thermoelastic solid. Part I: The thermomechanical formulation , 1977 .

[37]  H. P. Van Leeuwen,et al.  The kinetics of hydrogen embrittlement: A quantitative diffusion model , 1974 .

[38]  R. M. Bowen Part I – Theory of Mixtures , 1976 .

[39]  F. B. Hildebrand Advanced Calculus for Applications , 1962 .

[40]  S. Timoshenko,et al.  Theory of elasticity , 1975 .

[41]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[42]  E. Aifantis,et al.  Comments on the diffusion of a gas in a linear elastic solid , 1980 .

[43]  B. S. Berry,et al.  Anelastic Relaxation in Crystalline Solids , 1972 .

[44]  R. A. Oriani,et al.  Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel , 1977 .

[45]  C. Zener Elasticity and anelasticity of metals , 1948 .

[46]  W. Gerberich,et al.  A short-time diffusion correlation for hydrogen-induced crack growth kinetics , 1975 .

[47]  C. P. Flynn,et al.  Point Defects and Diffusion , 1973 .

[48]  Granino A. Korn,et al.  Mathematical handbook for scientists and engineers , 1961 .

[49]  H. Horner,et al.  Equilibrium density fluctuations and anelastic response in hydrogen-metal systems , 1975 .