Identificação e controle de processos via desenvolvimentos em séries ortonormais. Parte A: identificação

In this paper, an overview about the identification of dynamic systems using orthonormal basis function models, such as those based on Laguerre and Kautz functions, is presented. The mathematical foundations of these models as well as their advantages and limitations are discussed within the contexts of linear, robust, and nonlinear identification. The discussions comprise a broad bibliographical survey on the subject and a comparative analysis involving some specific model realizations, namely, linear, Volterra, fuzzy, and neural models within the orthonormal basis function framework. Theoretical and practical issues regarding the identification of these models are also presented and illustrated by means of two case studies related to a polymerization process.

[1]  Ricardo J. G. B. Campello,et al.  Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control , 2003 .

[2]  O. Nelles Nonlinear System Identification , 2001 .

[3]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .

[4]  Noël Tanguy,et al.  Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..

[5]  B. Wahlberg System identification using Laguerre models , 1991 .

[6]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-SISO case , 1994, IEEE Trans. Fuzzy Syst..

[7]  B. Wahlberg System identification using Kautz models , 1994, IEEE Trans. Autom. Control..

[8]  Tomás Oliveira e Silva,et al.  Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..

[9]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[10]  T. Oliveira e Silva,et al.  On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..

[11]  Kazuo Tanaka,et al.  Successive identification of a fuzzy model and its applications to prediction of a complex system , 1991 .

[12]  J. P. Norton,et al.  Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .

[13]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[14]  Bart Kosko,et al.  Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .

[15]  Theodore W. Berger,et al.  A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs , 2000, Neural Networks.

[16]  T. E. O. Silva Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..

[17]  J. Nazuno Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .

[18]  Guy A. Dumont,et al.  Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .

[19]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[21]  Ricardo J. G. B. Campello Arquiteturas e metodologias para modelagem e controle de sistemas complexos utilizando ferramentas classicas e modernas , 2002 .

[22]  Xiao-Jun Zeng,et al.  Approximation theory of fuzzy systems-MIMO case , 1995, IEEE Trans. Fuzzy Syst..

[23]  L. Ljung,et al.  Hard frequency-domain model error bounds from least-squares like identification techniques , 1992 .

[24]  L X Wang,et al.  Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.

[25]  Roderick Murray-Smith,et al.  Extending the functional equivalence of radial basis function networks and fuzzy inference systems , 1996, IEEE Trans. Neural Networks.

[26]  E. Walter,et al.  Estimation of parameter bounds from bounded-error data: a survey , 1990 .

[27]  Ricardo J. G. B. Campello,et al.  Identificação e controle de processos via desenvolvimentos em séries ortonormais. Parte B: controle preditivo , 2007 .

[28]  G.H.C. Oliveira,et al.  Fuzzy models within orthonormal basis function framework , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[29]  Nasir Ahmed,et al.  Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..

[30]  B. Ninness,et al.  A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[31]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[32]  Ricardo J. G. B. Campello,et al.  Control of a bioprocess using orthonormal basis function fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[33]  M. Sugeno,et al.  ErratumFuzzy modelling and control of multilayer incinerator , 1988 .

[34]  Luis A. Aguirre,et al.  Identificação não-linear caixa-cinza: uma revisão e novos resultados , 2004 .

[35]  P. Eykhoff System Identification Parameter and State Estimation , 1974 .

[36]  Ronald K. Pearson,et al.  Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..

[37]  Luis A. Aguirre,et al.  Nonlinearities in NARX polynomial models: representation and estimation , 2002 .

[38]  Gérard Favier,et al.  Generalized orthonormal basis selection for expanding quadratic volterra filters , 2003 .

[39]  J. Guiver,et al.  State-space nonlinear process modeling : Identification and universality , 1998 .

[40]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[41]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..

[42]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[43]  Gérard Favier,et al.  Laguerre-Volterra Filters Optimization Based on Laguerre Spectra , 2005, 2005 13th European Signal Processing Conference.

[44]  A. C. Tsoi,et al.  Nonlinear system identification using discrete Laguerre functions , 1996 .

[45]  Wagner Caradori do Amaral,et al.  CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .

[46]  David Levy,et al.  Book review: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence by Bart Kosko (Prentice Hall 1992) , 1992, CARN.

[47]  Gérard Favier,et al.  Review and Comparison of Ellipsoidal Bounding Algorithms , 1996 .

[48]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[49]  M. Milanese,et al.  Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .

[50]  Orthonormal Bases for System Identiication , 2007 .

[51]  Paul W. Broome,et al.  Discrete Orthonormal Sequences , 1965, JACM.

[52]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[53]  G. Dumont,et al.  An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..

[54]  P. V. D. Hof,et al.  System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[55]  Ricardo J. G. B. Campello,et al.  GA Optimization of Generalized OBF TS Fuzzy Models with Global and Local Estimation Approaches , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[56]  Gérard Favier,et al.  Selection of generalized orthonormal bases for second-order Volterra filters , 2005, Signal Process..

[57]  Kwang Bo Cho,et al.  Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction , 1996, Fuzzy Sets Syst..

[58]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[59]  G. Favier,et al.  Optimal Laguerre series expansion of discrete volterra models , 2001, European Control Conference.

[60]  Osvaldo Agamennoni,et al.  Approximate models for nonlinear dynamical systems and their generalization properties , 2001 .

[61]  Gérard Favier,et al.  ITERATIVE OPTIMIZATION METHOD OF GOB-VOLTERRA FILTERS , 2005 .

[62]  Francis J. Doyle,et al.  Identification and Control Using Volterra Models , 2001 .

[63]  Aarne Halme,et al.  Modeling of chromatographic separation process with Wiener-MLP representation , 2001 .

[64]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[65]  Ricardo J. G. B. Campello,et al.  GA Optimization of OBF TS Fuzzy Models with Linear and Non Linear Local Models , 2006, 2006 Ninth Brazilian Symposium on Neural Networks (SBRN'06).

[66]  Pertti M. Mäkilä,et al.  Approximation of stable systems by laguerre filters , 1990, Autom..

[67]  B. Wahlberg,et al.  Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .

[68]  Ronald K. Pearson,et al.  Nonlinear model-based control using second-order Volterra models , 1995, Autom..

[69]  Noël Tanguy,et al.  Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..

[70]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[71]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[72]  Ricardo J. G. B. Campello,et al.  A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..

[73]  N. Tanguy,et al.  Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..

[74]  Ricardo J. G. B. Campello,et al.  Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[75]  David Clarke,et al.  Advances in model-based predictive control , 1994 .

[76]  Alfredo C. Desages,et al.  Approximate models for nonlinear process control , 1996 .

[77]  Wagner Caradori do Amaral,et al.  Optimal Expansions of Discrete-Time Volterra Models Using Laguerre Functions , 2003 .

[78]  Wagner Caradori do Amaral,et al.  Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..

[79]  Ronald Soeterboek,et al.  Predictive Control: A Unified Approach , 1992 .

[80]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[81]  Michael A. Henson,et al.  Nonlinear model predictive control: current status and future directions , 1998 .

[82]  G. Dumont,et al.  Deterministic adaptive control based on Laguerre series representation , 1988 .

[83]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[84]  Lennart Ljung,et al.  System identification (2nd ed.): theory for the user , 1999 .

[85]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .