Identificação e controle de processos via desenvolvimentos em séries ortonormais. Parte A: identificação
暂无分享,去创建一个
Ricardo J. G. B. Campello | Wagner Caradori do Amaral | Gustavo H. C. Oliveira | W. C. Amaral | R. C. B. Campello | G. H. C. Oliveira
[1] Ricardo J. G. B. Campello,et al. Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control , 2003 .
[2] O. Nelles. Nonlinear System Identification , 2001 .
[3] Robert Babuska,et al. Fuzzy Modeling for Control , 1998 .
[4] Noël Tanguy,et al. Online optimization of the time scale in adaptive Laguerre-based filters , 2000, IEEE Trans. Signal Process..
[5] B. Wahlberg. System identification using Laguerre models , 1991 .
[6] Xiao-Jun Zeng,et al. Approximation theory of fuzzy systems-SISO case , 1994, IEEE Trans. Fuzzy Syst..
[7] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[8] Tomás Oliveira e Silva,et al. Optimality conditions for truncated Laguerre networks , 1994, IEEE Trans. Signal Process..
[9] M. Schetzen. The Volterra and Wiener Theories of Nonlinear Systems , 1980 .
[10] T. Oliveira e Silva,et al. On the determination of the optimal pole position of Laguerre filters , 1995, IEEE Trans. Signal Process..
[11] Kazuo Tanaka,et al. Successive identification of a fuzzy model and its applications to prediction of a complex system , 1991 .
[12] J. P. Norton,et al. Fast and robust algorithm to compute exact polytope parameter bounds , 1990 .
[13] Leon O. Chua,et al. Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .
[14] Bart Kosko,et al. Neural networks and fuzzy systems: a dynamical systems approach to machine intelligence , 1991 .
[15] Theodore W. Berger,et al. A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs , 2000, Neural Networks.
[16] T. E. O. Silva. Optimality conditions for truncated Kautz networks with two periodically repeating complex conjugate poles , 1995, IEEE Trans. Autom. Control..
[17] J. Nazuno. Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .
[18] Guy A. Dumont,et al. Non-linear adaptive control via Laguerre expansion of Volterra kernels , 1993 .
[19] Manfred Morari,et al. Model predictive control: Theory and practice - A survey , 1989, Autom..
[21] Ricardo J. G. B. Campello. Arquiteturas e metodologias para modelagem e controle de sistemas complexos utilizando ferramentas classicas e modernas , 2002 .
[22] Xiao-Jun Zeng,et al. Approximation theory of fuzzy systems-MIMO case , 1995, IEEE Trans. Fuzzy Syst..
[23] L. Ljung,et al. Hard frequency-domain model error bounds from least-squares like identification techniques , 1992 .
[24] L X Wang,et al. Fuzzy basis functions, universal approximation, and orthogonal least-squares learning , 1992, IEEE Trans. Neural Networks.
[25] Roderick Murray-Smith,et al. Extending the functional equivalence of radial basis function networks and fuzzy inference systems , 1996, IEEE Trans. Neural Networks.
[26] E. Walter,et al. Estimation of parameter bounds from bounded-error data: a survey , 1990 .
[27] Ricardo J. G. B. Campello,et al. Identificação e controle de processos via desenvolvimentos em séries ortonormais. Parte B: controle preditivo , 2007 .
[28] G.H.C. Oliveira,et al. Fuzzy models within orthonormal basis function framework , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).
[29] Nasir Ahmed,et al. Optimum Laguerre networks for a class of discrete-time systems , 1991, IEEE Trans. Signal Process..
[30] B. Ninness,et al. A unifying construction of orthonormal bases for system identification , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[31] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[32] Ricardo J. G. B. Campello,et al. Control of a bioprocess using orthonormal basis function fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).
[33] M. Sugeno,et al. ErratumFuzzy modelling and control of multilayer incinerator , 1988 .
[34] Luis A. Aguirre,et al. Identificação não-linear caixa-cinza: uma revisão e novos resultados , 2004 .
[35] P. Eykhoff. System Identification Parameter and State Estimation , 1974 .
[36] Ronald K. Pearson,et al. Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..
[37] Luis A. Aguirre,et al. Nonlinearities in NARX polynomial models: representation and estimation , 2002 .
[38] Gérard Favier,et al. Generalized orthonormal basis selection for expanding quadratic volterra filters , 2003 .
[39] J. Guiver,et al. State-space nonlinear process modeling : Identification and universality , 1998 .
[40] Bart Kosko,et al. Fuzzy Engineering , 1996 .
[41] Bo Wahlberg,et al. On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..
[42] W. Rugh. Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .
[43] Gérard Favier,et al. Laguerre-Volterra Filters Optimization Based on Laguerre Spectra , 2005, 2005 13th European Signal Processing Conference.
[44] A. C. Tsoi,et al. Nonlinear system identification using discrete Laguerre functions , 1996 .
[45] Wagner Caradori do Amaral,et al. CHOICE OF FREE PARAMETERS IN EXPANSIONS OF DISCRETE-TIME VOLTERRA MODELS USING KAUTZ FUNCTIONS , 2005 .
[46] David Levy,et al. Book review: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence by Bart Kosko (Prentice Hall 1992) , 1992, CARN.
[47] Gérard Favier,et al. Review and Comparison of Ellipsoidal Bounding Algorithms , 1996 .
[48] Michio Sugeno,et al. Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.
[49] M. Milanese,et al. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: Linear families of models and estimators , 1982 .
[50] Orthonormal Bases for System Identiication , 2007 .
[51] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[52] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.
[53] G. Dumont,et al. An optimum time scale for discrete Laguerre network , 1993, IEEE Trans. Autom. Control..
[54] P. V. D. Hof,et al. System identification with generalized orthonormal basis functions , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[55] Ricardo J. G. B. Campello,et al. GA Optimization of Generalized OBF TS Fuzzy Models with Global and Local Estimation Approaches , 2006, 2006 IEEE International Conference on Fuzzy Systems.
[56] Gérard Favier,et al. Selection of generalized orthonormal bases for second-order Volterra filters , 2005, Signal Process..
[57] Kwang Bo Cho,et al. Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction , 1996, Fuzzy Sets Syst..
[58] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[59] G. Favier,et al. Optimal Laguerre series expansion of discrete volterra models , 2001, European Control Conference.
[60] Osvaldo Agamennoni,et al. Approximate models for nonlinear dynamical systems and their generalization properties , 2001 .
[61] Gérard Favier,et al. ITERATIVE OPTIMIZATION METHOD OF GOB-VOLTERRA FILTERS , 2005 .
[62] Francis J. Doyle,et al. Identification and Control Using Volterra Models , 2001 .
[63] Aarne Halme,et al. Modeling of chromatographic separation process with Wiener-MLP representation , 2001 .
[64] Stephen Yurkovich,et al. Fuzzy Control , 1997 .
[65] Ricardo J. G. B. Campello,et al. GA Optimization of OBF TS Fuzzy Models with Linear and Non Linear Local Models , 2006, 2006 Ninth Brazilian Symposium on Neural Networks (SBRN'06).
[66] Pertti M. Mäkilä,et al. Approximation of stable systems by laguerre filters , 1990, Autom..
[67] B. Wahlberg,et al. Modelling and Identification with Rational Orthogonal Basis Functions , 2000 .
[68] Ronald K. Pearson,et al. Nonlinear model-based control using second-order Volterra models , 1995, Autom..
[69] Noël Tanguy,et al. Pertinent choice of parameters for discrete Kautz approximation , 2002, IEEE Trans. Autom. Control..
[70] Stephen A. Billings,et al. Identi cation of nonlinear systems-A survey , 1980 .
[71] M. Sugeno,et al. Structure identification of fuzzy model , 1988 .
[72] Ricardo J. G. B. Campello,et al. A note on the optimal expansion of Volterra models using Laguerre functions , 2006, Autom..
[73] N. Tanguy,et al. Optimum choice of free parameter in orthonormal approximations , 1995, IEEE Trans. Autom. Control..
[74] Ricardo J. G. B. Campello,et al. Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).
[75] David Clarke,et al. Advances in model-based predictive control , 1994 .
[76] Alfredo C. Desages,et al. Approximate models for nonlinear process control , 1996 .
[77] Wagner Caradori do Amaral,et al. Optimal Expansions of Discrete-Time Volterra Models Using Laguerre Functions , 2003 .
[78] Wagner Caradori do Amaral,et al. Constrained robust predictive controller for uncertain processes modeled by orthonormal series functions , 2000, Autom..
[79] Ronald Soeterboek,et al. Predictive Control: A Unified Approach , 1992 .
[80] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[81] Michael A. Henson,et al. Nonlinear model predictive control: current status and future directions , 1998 .
[82] G. Dumont,et al. Deterministic adaptive control based on Laguerre series representation , 1988 .
[83] Ronald R. Yager,et al. Essentials of fuzzy modeling and control , 1994 .
[84] Lennart Ljung,et al. System identification (2nd ed.): theory for the user , 1999 .
[85] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .