A nonlinear state-space approach to hysteresis identification

Abstract Most studies tackling hysteresis identification in the technical literature follow white-box approaches, i.e. they rely on the assumption that measured data obey a specific hysteretic model. Such an assumption may be a hard requirement to handle in real applications, since hysteresis is a highly individualistic nonlinear behaviour. The present paper adopts a black-box approach based on nonlinear state-space models to identify hysteresis dynamics. This approach is shown to provide a general framework to hysteresis identification, featuring flexibility and parsimony of representation. Nonlinear model terms are constructed as a multivariate polynomial in the state variables, and parameter estimation is performed by minimising weighted least-squares cost functions. Technical issues, including the selection of the model order and the polynomial degree, are discussed, and model validation is achieved in both broadband and sine conditions. The study is carried out numerically by exploiting synthetic data generated via the Bouc–Wen equations.

[1]  Rik Pintelon,et al.  Variance analysis of frequency response function measurements using periodic excitations , 2004, IMTC 2004.

[2]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method , 2015 .

[3]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[4]  Ivory Ghost , .

[5]  Keith Worden,et al.  Identification of Hysteretic Systems Using NARX Models, Part I: Evolutionary Identification , 2012 .

[6]  Fouad Giri,et al.  Parameter identification of Hammerstein systems with Bouc-Wen hysteresis input nonlinearity* , 2014, 2014 European Control Conference (ECC).

[7]  Gerd Vandersteen,et al.  Improved (non-)parametric identification of dynamic systems excited by periodic signals , 2011 .

[8]  Jan Swevers,et al.  Identification of nonlinear systems using Polynomial Nonlinear State Space models , 2010, Autom..

[9]  Keith Worden,et al.  On the Identification of Hysteretic Systems, Part I: an Extended Evolutionary Scheme , 2011 .

[10]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[11]  V. Ramachandran,et al.  Perceptual Organization in Multistable Apparent Motion , 1985, Perception.

[12]  D. Haydon,et al.  Alternative stable states in ecology , 2003 .

[13]  Thanh Nho Do,et al.  A survey on hysteresis modeling, identification and control , 2014 .

[14]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[15]  Keith Worden,et al.  On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification , 2012 .

[16]  T. Mueller The influence of laminar separation and transition on low Reynolds number airfoil hysteresis , 1984 .

[17]  Pol D. Spanos,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[18]  J. Schoukens,et al.  Identification of Linear Systems with Nonlinear Distortions , 2003 .

[19]  Rik Pintelon,et al.  Linear modeling in the presence of nonlinear distortions , 2002, IEEE Trans. Instrum. Meas..

[20]  B. Drincic,et al.  Nonlinear feedback models of hysteresis , 2009, IEEE Control Systems.

[21]  Dennis Bernstein Ivory Ghost [Ask The Experts] , 2007, IEEE Control Systems.

[22]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[23]  Johan Schoukens,et al.  Comparison of several data-driven nonlinear system identification methods on a simplified glucoregulatory system example , 2014, ArXiv.

[24]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[25]  J. Schoukens,et al.  Robustness Issues of the Equivalent Linear Representation of a Nonlinear System , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[26]  G. Bertotti Hysteresis in Magnetism: For Physicists, Materials Scientists, and Engineers , 1998 .

[27]  L. Gaul,et al.  The Role of Friction in Mechanical Joints , 2001 .

[28]  Rik Pintelon,et al.  System Identification: A Frequency Domain Approach , 2012 .

[29]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[30]  D. J. Morrison,et al.  Cyclic plasticity of nickel at low plastic strain amplitude: hysteresis loop shape analysis , 2001 .

[31]  M. Fliess,et al.  On the Approximation of Nonlinear Systems by Some Simple State-Space Models , 1982 .

[32]  Marc P. Mignolet,et al.  A stochastic Iwan-type model for joint behavior variability modeling , 2015 .

[33]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Yves Rolain,et al.  Mastering System Identification in 100 Exercises , 2012 .

[35]  Gerd Vandersteen,et al.  Robustness Issues of the Best Linear Approximation of a Nonlinear System , 2009, IEEE Transactions on Instrumentation and Measurement.

[36]  Shilin Xie,et al.  Identification of nonlinear hysteretic systems by artificial neural network , 2013 .

[37]  R. Bouc Forced Vibration of Mechanical Systems with Hysteresis , 1967 .

[38]  Johan Schoukens,et al.  Detection of nonlinear distortions with multisine excitations in the case of nonideal behavior of the input signal , 2003, IEEE Trans. Instrum. Meas..

[39]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[40]  J. Hensman,et al.  Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference , 2012 .

[41]  Rik Pintelon,et al.  Frequency domain subspace system identification using non-parametric noise models , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[42]  Rik Pintelon,et al.  FRF Measurement of Nonlinear Systems Operating in Closed Loop , 2013, IEEE Transactions on Instrumentation and Measurement.

[43]  John Ian Ferrell,et al.  Detection of multi-stability , 2004 .

[44]  James Hensman,et al.  Identification of hysteretic systems using NARX models, part II : a Bayesian approach , 2012 .

[45]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[46]  Johan Schoukens,et al.  Nonlinear system-identification of the filling phase of a wet-clutch system , 2011 .

[47]  Johan Schoukens,et al.  Decoupling Multivariate Polynomials Using First-Order Information and Tensor Decompositions , 2014, SIAM J. Matrix Anal. Appl..

[48]  Keith Worden,et al.  On the identification of hysteretic systems. Part II: Bayesian sensitivity analysis and parameter confidence , 2012 .

[49]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .