Exact relaxation to Gibbs and non-equilibrium steady states in the quantum cellular automaton Rule 54

We study the out-of-equilibrium dynamics of the quantum cellular automaton Rule 54 using a time-channel approach. We exhibit a family of (non-equilibrium) product states for which we are able to describe exactly the full relaxation dynamics. We use this to prove that finite subsystems relax to a one-parameter family of Gibbs states. We also consider inhomogeneous quenches. Specifically, we show that when the two halves of the system are prepared in two different solvable states, finite subsystems at finite distance from the centre eventually relax to the non-equilibrium steady state (NESS) predicted by generalised hydrodynamics. To the best of our knowledge, this is the first exact description of the relaxation to a NESS in an interacting system and, therefore, the first independent confirmation of generalised hydrodynamics for an inhomogeneous quench.

[1]  P. Calabrese,et al.  Real-time evolution in the Hubbard model with infinite repulsion , 2021, SciPost Physics.

[2]  Keisuke Fujii,et al.  Computational power of one- and two-dimensional dual-unitary quantum circuits , 2021, Quantum.

[3]  D. Abanin,et al.  Influence functional of many-body systems: Temporal entanglement and matrix-product state representation , 2021, Annals of Physics.

[4]  B. Pozsgay,et al.  Integrable spin chain with Hilbert space fragmentation and solvable real-time dynamics. , 2021, Physical review. E.

[5]  Katja Klobas,et al.  Entanglement dynamics in Rule 54: Exact results and quasiparticle picture , 2021, SciPost Physics.

[6]  V. Alba,et al.  Generalized-hydrodynamic approach to inhomogeneous quenches: correlations, entanglement and quantum effects , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[7]  Katja Klobas,et al.  Rule 54: exactly solvable model of nonequilibrium statistical mechanics , 2021, Journal of Statistical Mechanics: Theory and Experiment.

[8]  B. Bertini,et al.  Entanglement barriers in dual-unitary circuits , 2021, Physical Review B.

[9]  T. Prosen,et al.  Eigenstate thermalization in dual-unitary quantum circuits: Asymptotics of spectral functions. , 2021, Physical review. E.

[10]  T. Grover,et al.  Spacetime duality between localization transitions and measurement-induced transitions , 2021, PRX Quantum.

[11]  L. Piroli,et al.  Exact Thermalization Dynamics in the "Rule 54" Quantum Cellular Automaton. , 2020, Physical review letters.

[12]  Tomaz Prosen,et al.  Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits , 2020, Communications in Mathematical Physics.

[13]  S. Garratt,et al.  Many-Body Delocalization as Symmetry Breaking. , 2020, Physical review letters.

[14]  F. Verstraete,et al.  Matrix product states and projected entangled pair states: Concepts, symmetries, theorems , 2020, Reviews of Modern Physics.

[15]  V. Khemani,et al.  Postselection-Free Entanglement Dynamics via Spacetime Duality. , 2020, Physical review letters.

[16]  A. Lamacraft,et al.  Ergodic and Nonergodic Dual-Unitary Quantum Circuits with Arbitrary Local Hilbert Space Dimension. , 2020, Physical review letters.

[17]  J. Chalker,et al.  Local Pairing of Feynman Histories in Many-Body Floquet Models , 2020, 2008.01697.

[18]  V. Alba Diffusion and operator entanglement spreading , 2020, Physical Review B.

[19]  J. Chalker,et al.  Many-body delocalisation as symmetry breaking , 2021 .

[20]  T. Grover,et al.  Entanglement transitions via space-time rotation of quantum circuits , 2021 .

[21]  M. Fagotti,et al.  The folded spin-1/2 XXZ model: II. Thermodynamics and hydrodynamics with a minimal set of charges , 2020, 2011.01159.

[22]  S. Sotiriadis Non-Equilibrium Steady State of the Lieb-Liniger model: multiple-integral representation of the time evolved many-body wave-function , 2020, 2010.03553.

[23]  D. Abanin,et al.  Influence Matrix Approach to Many-Body Floquet Dynamics , 2020, 2009.10105.

[24]  M. Fagotti,et al.  The Folded Spin-1/2 XXZ Model: I. Diagonalisation, Jamming, and Ground State Properties , 2020, 2009.04995.

[25]  T. Prosen,et al.  Statistics of the spectral form factor in the self-dual kicked Ising model , 2020, Physical Review Research.

[26]  J. Chalker,et al.  Many-body quantum chaos and the local pairing of Feynman histories. , 2020 .

[27]  F. Essler,et al.  A systematic $1/c$-expansion of form factor sums for dynamical correlations in the Lieb-Liniger model , 2020, 2007.15396.

[28]  B. Bertini,et al.  Correlations in Perturbed Dual-Unitary Circuits: Efficient Path-Integral Formula , 2020, 2006.07304.

[29]  Katja Klobas,et al.  Space-like dynamics in a reversible cellular automaton , 2020, SciPost Physics Core.

[30]  M. Znidaric,et al.  Finite-temperature transport in one-dimensional quantum lattice models , 2020, Reviews of Modern Physics.

[31]  X. Qi,et al.  A random unitary circuit model for black hole evaporation , 2020, Journal of High Energy Physics.

[32]  A. C. Cubero How generalized hydrodynamics time evolution arises from a form factor expansion , 2020, 2001.03065.

[33]  J. P. Garrahan,et al.  Matrix product state of multi-time correlations , 2019, Journal of Physics A: Mathematical and Theoretical.

[34]  J. Cirac,et al.  Exact dynamics in dual-unitary quantum circuits , 2019, Physical Review B.

[35]  D. Huse,et al.  Critical properties of the measurement-induced transition in random quantum circuits , 2019, Physical Review B.

[36]  X. Qi,et al.  Quantum Error Correction in Scrambling Dynamics and Measurement-Induced Phase Transition. , 2019, Physical review letters.

[37]  Soonwon Choi,et al.  Theory of the phase transition in random unitary circuits with measurements , 2019, Physical Review B.

[38]  T. Guhr,et al.  Transition from quantum chaos to localization in spin chains. , 2019, Physical review. E.

[39]  T. Zhou,et al.  Entanglement Membrane in Chaotic Many-Body Systems , 2019, 1912.12311.

[40]  B. Doyon Lecture notes on Generalised Hydrodynamics , 2019, 1912.08496.

[41]  J. Cirac,et al.  Quantum chaos in the Brownian SYK model with large finite N : OTOCs and tripartite information , 2019, Journal of High Energy Physics.

[42]  S. Gopalakrishnan,et al.  Integrable Many-Body Quantum Floquet-Thouless Pumps. , 2019, Physical review letters.

[43]  T. Prosen,et al.  Exact Correlation Functions for Dual-Unitary Lattice Models in 1+1 Dimensions. , 2019, Physical review letters.

[44]  A. Lamacraft,et al.  Unitary circuits of finite depth and infinite width from quantum channels , 2019, Physical Review B.

[45]  V. Alba,et al.  Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain. , 2019, Physical review letters.

[46]  J. P. Garrahan,et al.  Exact large deviation statistics and trajectory phase transition of a deterministic boundary driven cellular automaton. , 2019, Physical review. E.

[47]  T. Prosen,et al.  Entanglement Spreading in a Minimal Model of Maximal Many-Body Quantum Chaos , 2018, Physical Review X.

[48]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[49]  T. Prosen,et al.  Time-Dependent Matrix Product Ansatz for Interacting Reversible Dynamics , 2018, Communications in Mathematical Physics.

[50]  T. Zhou,et al.  Operator dynamics in a Brownian quantum circuit. , 2018, Physical review. E.

[51]  Honghui Zhou Fractal , 2019, Proceedings of the Seventh International Workshop on Security in Cloud Computing - SCC '19.

[52]  D. Huse,et al.  Hydrodynamics of operator spreading and quasiparticle diffusion in interacting integrable systems , 2018, Physical Review B.

[53]  S. Takesue,et al.  Two extensions of exact nonequilibrium steady states of a boundary-driven cellular automaton , 2018, Journal of Physics A: Mathematical and Theoretical.

[54]  S. Gopalakrishnan Operator growth and eigenstate entanglement in an interacting integrable Floquet system , 2018, Physical Review B.

[55]  T. Prosen,et al.  Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos. , 2018, Physical review letters.

[56]  L. Piroli,et al.  Non-analytic behavior of the Loschmidt echo in XXZ spin chains: Exact results , 2018, Nuclear Physics B.

[57]  D. Huse,et al.  Coarse-grained dynamics of operator and state entanglement , 2018, 1803.00089.

[58]  S. Gopalakrishnan,et al.  Facilitated quantum cellular automata as simple models with non-thermal eigenstates and dynamics , 2018, Quantum Science and Technology.

[59]  J. Chalker,et al.  Solution of a Minimal Model for Many-Body Quantum Chaos , 2017, Physical Review X.

[60]  B. Doyon Exact large-scale correlations in integrable systems out of equilibrium , 2017, SciPost Physics.

[61]  M. Rigol,et al.  Quantum Quenches and Relaxation Dynamics in the Thermodynamic Limit. , 2017, Physical review letters.

[62]  D. Huse,et al.  Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws , 2017, Physical Review X.

[63]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[64]  T. Prosen,et al.  Strongly correlated non-equilibrium steady states with currents – quantum and classical picture , 2017, The European Physical Journal Special Topics.

[65]  L. Piroli,et al.  What is an integrable quench , 2017, 1709.04796.

[66]  Jeongwan Haah,et al.  Operator Spreading in Random Unitary Circuits , 2017, 1705.08975.

[67]  S. Sondhi,et al.  Operator Hydrodynamics, OTOCs, and Entanglement Growth in Systems without Conservation Laws , 2017, 1705.08910.

[68]  H. Spohn,et al.  Drude Weight for the Lieb-Liniger Bose Gas , 2017, 1705.08141.

[69]  Tomaz Prosen,et al.  Exact matrix product decay modes of a boundary driven cellular automaton , 2017, 1705.06645.

[70]  E. Vernier,et al.  From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains , 2016, 1611.06126.

[71]  Jeongwan Haah,et al.  Quantum Entanglement Growth Under Random Unitary Dynamics , 2016, 1608.06950.

[72]  P. Calabrese,et al.  Introduction to ‘Quantum Integrability in Out of Equilibrium Systems’ , 2016 .

[73]  M. Collura,et al.  Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents. , 2016, Physical review letters.

[74]  B. Doyon,et al.  Emergent hydrodynamics in integrable quantum systems out of equilibrium , 2016, 1605.07331.

[75]  J. Schmiedmayer,et al.  Prethermalization and universal dynamics in near-integrable quantum systems , 2016, 1603.09385.

[76]  D. Bernard,et al.  Conformal field theory out of equilibrium: a review , 2016, 1603.07765.

[77]  Romain Vasseur,et al.  Nonequilibrium quantum dynamics and transport: from integrability to many-body localization , 2016, 1603.06618.

[78]  F. Essler,et al.  Quench dynamics and relaxation in isolated integrable quantum spin chains , 2016, 1603.06452.

[79]  J. Caux The Quench Action , 2016, 1603.04689.

[80]  T. Prosen,et al.  Quasilocal charges in integrable lattice systems , 2016, 1603.00440.

[81]  T. Guhr,et al.  Particle-Time Duality in the Kicked Ising Chain II: Applications to the Spectrum , 2016, 1602.07479.

[82]  V. Eisler,et al.  Real-time dynamics in a strongly interacting bosonic hopping model: global quenches and mapping to the XX chain , 2016, 1602.03065.

[83]  T. Prosen,et al.  Integrability of a deterministic cellular automaton driven by stochastic boundaries , 2015, 1512.01385.

[84]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[85]  J. Caux,et al.  Relaxation dynamics of local observables in integrable systems , 2015, 1505.03080.

[86]  M. Hastings,et al.  Connecting entanglement in time and space: Improving the folding algorithm , 2014, 1411.7950.

[87]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[88]  S. Shenker,et al.  Stringy effects in scrambling , 2014, 1412.6087.

[89]  B. Pozsgay Quantum quenches and generalized Gibbs ensemble in a Bethe Ansatz solvable lattice model of interacting bosons , 2014, 1407.8344.

[90]  D. Schuricht,et al.  Quantum quench in the sine-Gordon model , 2014, 1405.4813.

[91]  A. Läuchli,et al.  "Light-cone" dynamics after quantum quenches in spin chains. , 2014, Physical review letters.

[92]  Hideo Aoki,et al.  Nonequilibrium dynamical mean-field theory and its applications , 2013, 1310.5329.

[93]  B. Pozsgay The dynamical free energy and the Loschmidt echo for a class of quantum quenches in the Heisenberg spin chain , 2013, 1308.3087.

[94]  M. Bañuls,et al.  Tensor network techniques for the computation of dynamical observables in one-dimensional quantum spin systems , 2012, 1204.5080.

[95]  Michele Fabrizio,et al.  Localization and Glassy Dynamics Of Many-Body Quantum Systems , 2011, Scientific Reports.

[96]  P. Calabrese,et al.  Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators , 2011, Physical review letters.

[97]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[98]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[99]  M. Rigol,et al.  Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems , 2010 .

[100]  J I Cirac,et al.  Matrix product states for dynamical simulation of infinite chains. , 2009, Physical review letters.

[101]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[102]  J. Cardy,et al.  Quantum quenches in extended systems , 2007, 0704.1880.

[103]  T. Osborne Efficient approximation of the dynamics of one-dimensional quantum spin systems. , 2006, Physical review letters.

[104]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[105]  Oddelek ZA Fiziko,et al.  UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO , 2005 .

[106]  S. White,et al.  Real-time evolution using the density matrix renormalization group. , 2004, Physical review letters.

[107]  G. Vidal,et al.  A pr 2 00 4 Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces , 2022 .

[108]  Minoru Takahashi Thermodynamics of One-Dimensional Solvable Models , 1999 .

[109]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[110]  Ulrich Pinkall,et al.  On two integrable cellular automata , 1993 .

[111]  A. Klümper Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains , 1993 .

[112]  V. Korepin,et al.  Quantum Inverse Scattering Method and Correlation Functions , 1993, cond-mat/9301031.

[113]  A. Klümper Free energy and correlation lengths of quantum chains related to restricted solid-on-solid lattice models† , 1992 .

[114]  M. Inoue,et al.  The ST-Transformation Approach to Analytic Solutions of Quantum Systems. II: Transfer-Matrix and Pfaffian Methods , 1988 .

[115]  Takesue Reversible cellular automata and statistical mechanics. , 1987, Physical review letters.

[116]  M. Inoue,et al.  The ST-Transformation Approach to Analytic Solutions of Quantum Systems. I : General Formulations and Basic Limit Theorems , 1987 .

[117]  Glenn H. Fredrickson,et al.  Kinetic Ising model of the glass transition , 1984 .

[118]  C. Yang,et al.  Thermodynamics of a One‐Dimensional System of Bosons with Repulsive Delta‐Function Interaction , 1969 .