Recent Advances in Field Electron Microscopy of Metals

Publisher Summary The chapter explains how field electron microscopy has established itself as a powerful tool for elucidating a variety of phenomena occurring at metal and semiconductor surfaces. The quasielectron momentum components perpendicular to the tunneling direction are conserved during electron tunneling through a finite potential barrier. The chapter talks about the many-body approach that involves the thermodynamic Green's function method to treat field emission from superconductors, and nonideal metals in which electrons collide with phonons, impurities, and lattice imperfections. The method was also applied to the effect of a finite analyzer resolution. The atomic potential was represented both by a square well with an attractive core parameterized by its depth and width, and by a repulsive delta function potential that was equivalent to orthogonalization of the tunneling electron wavefunction to the occupied, tightly bound adsorbate electron orbitals. Plausible forms for the pseudopotential for both metallic and neutral adsorbates were suggested. The chapter also states that a Stark splitting of an electron–phonon transition can be envisioned in the case of degenerate vibrational, rotational, or bending modes.

[1]  R. Fowler,et al.  Electron Emission in Intense Electric Fields , 1928 .

[2]  S. M. Marcus,et al.  Theory of Inelastic Electron-Molecule Interactions in Tunnel Junctions , 1967 .

[3]  W. P. Dyke,et al.  Determination of the Surface Tension and Surface Migration Constants for Tungsten , 1960 .

[4]  A. Oostrom,et al.  Experimental evidence for tunnel-resonance effects in field electron emission , 1967 .

[5]  Russell D. Young,et al.  Theoretical Total-Energy Distribution of Field-Emitted Electrons , 1959 .

[6]  L. Swanson,et al.  Angular Confinement of Field Electron and Ion Emission , 1969 .

[7]  P. Levine Thermoelectric Phenomena Associated with Electron‐Field Emission , 1962 .

[8]  C. Osborne Field emission of electrons from transition metals - correlation effects in narrow bands , 1971 .

[9]  R. Gomer Work Function in Field Emission. Chemisorption , 1953 .

[10]  A. V. Crewe,et al.  Electron Gun Using a Field Emission Source , 1968 .

[11]  P. Redhead Chemisorption on polycrystalline tungsten. Part 1.—Carbon monoxide , 1961 .

[12]  L. W. Swanson,et al.  Low‐Energy Electron Interaction with Coadsorbates on Tungsten , 1968 .

[13]  L. Schmidt Adsorption of Barium on Tungsten: Measurements on Individual Crystal Planes , 1967 .

[14]  T. Rhodin,et al.  Some properties of thin metal films observed by field-ion and field emission microscopy☆ , 1968 .

[15]  A. Melmed Epitaxial growth of iron on tungsten field emission points , 1967 .

[16]  L. Swanson,et al.  Total-energy distribution of field-emitted electrons and single-plane work functions for tungsten. , 1967 .

[17]  P. H. Cutler,et al.  Theory of electron tunneling from d bands in solids I. Application to field emission , 1970 .

[18]  W. P. Dyke,et al.  THE FIELD EMISSION INITIATED VACUUM ARC. I. EXPERIMENTS ON ARC INITIATION , 1953 .

[19]  H. H. Potter Electrical resistance and thermoelectric power of the transition metals , 1941 .

[20]  W. B. Nottingham Remarks on Energy Losses Attending Thermionic Emission of Electrons from Metals , 1941 .

[21]  R. H. Ritchie Coupled Electron‐Hole Cascade in a Free Electron Gas , 1966 .

[22]  C. R. Crowell,et al.  Temperature Dependence of the Work Function of Silver, Sodium, and Potassium , 1959 .

[23]  M. Paunov Feldelektronenmikroskopische Untersuchungen der Quecksilberkeimbildung , 1967 .

[24]  C. Kleint Surface diffusion model of adsorption-induced field emission flicker noise: I. Theory , 1971 .

[25]  L. Swanson,et al.  Adsorption of cesium fluoride on tungsten , 1968 .

[26]  M. Isaacson,et al.  A Simple Scanning Electron Microscope , 1969 .

[27]  A. van der Ziel,et al.  Noise in field emission diodes , 1966 .

[28]  L. Swanson,et al.  A field emission study of oxygen adsorption on the /110/, /211/, /111/ and /100/ planes of tungsten. , 1968 .

[29]  W. P. Dyke,et al.  THE FIELD EMISSION INITIATED VACUUM ARC. II. THE RESISTIVELY HEATED EMITTER , 1953 .

[30]  L. W. Swanson,et al.  The effect of electric field on adsorbed layers of cesium on various refractory metals , 1964 .

[31]  Band-Structure Effects in the Field-Induced Tunneling of Electrons from Metals , 1969 .

[32]  H. Gasse,et al.  Das Stromrauschen bei Feldemission und sein Zusammenhang mit Adsorptionserscheinungen , 1965 .

[33]  L. W. Swanson,et al.  Electrical Breakdown between Metal Electrodes in High Vacuum. I. Theory , 1967 .

[34]  Walter Schottky,et al.  Small-Shot Effect and Flicker Effect , 1926 .

[35]  F. Ashworth Field Eflasion Microscopy , 1951 .

[36]  R. A. Collins,et al.  The adsorption and nucleation of zirconium on tungsten field emitters , 1968 .

[37]  L. Nordheim The Effect of the Image Force on the Emission and Reflexion of Electrons by Metals , 1928 .

[38]  Edward M. Purcell,et al.  The Focusing of Charged Particles by a Spherical Condenser , 1938 .

[39]  R. Gomer,et al.  Adsorption of Potassium on Tungsten: Measurements on Single‐Crystal Planes , 1966 .

[40]  E. Müller Work Function of Tungsten Single Crystal Planes Measured by the Field Emission Microscope , 1955 .

[41]  O. Schärpf,et al.  Measurements of the polarization of field emitted electrons from polycrystalline gadolinium , 1967 .

[42]  P. H. Cutler,et al.  Effect of non-equilibrium distribution on energy exchange processes at a metal surface☆ , 1968 .

[43]  L. W. Swanson,et al.  Field‐Electron‐Microscopy Studies of Cesium Layers on Various Refractory Metals: Work Function Change , 1968 .

[44]  R. Gomer,et al.  Adsorption of Cs on Tungsten: Measurements on Single‐Crystal Planes , 1969 .

[45]  R. Gomer,et al.  Field Emission from Metal Whiskers , 1959 .

[46]  J. Lambe,et al.  Molecular Vibration Spectra by Inelastic Electron Tunneling , 1968 .

[47]  Theoretische Betrachtungen zum Funkelrauschen bei Feldemission , 1963 .

[48]  Molecular Vibration Spectra from Field‐Emission Energy Distributions , 1970 .

[49]  R. A. Collins,et al.  Effects of hydrogen contamination on the work function of uranium on tungsten , 1968 .

[50]  L. Swanson,et al.  The effect of polyatomic absorbates on the total energy distribution of field emitted electrons , 1970 .

[51]  R. D. Young,et al.  Field emission through single strontium atoms adsorbed on a tungsten surface , 1968 .

[52]  J. S. Anderson,et al.  Field emission and field ion microscope studies of the epitaxial growth of nickel on tungsten , 1971 .

[53]  C. Kuyatt,et al.  Resolution Determination in Field Emission Energy Analyzers , 1968 .

[54]  P. H. Cutler,et al.  A model calculation of field emission from 3d bands in nickel , 1970 .

[55]  R. Gomer,et al.  Evidence of Electron-Electron Scattering from Field Emission , 1970 .

[56]  L. Swanson,et al.  Anomalous Total-Energy Distribution for a Molybdenum Field Emitter , 1967 .

[57]  J. W. Gadzuk,et al.  Hot-Hole—Electron Cascades in Field Emission from Metals , 1971 .

[58]  J. Pendry,et al.  Surface states ond-band metals , 1970 .

[59]  Conyers Herring,et al.  Effect of Change of Scale on Sintering Phenomena , 1950 .

[60]  J. W. Gadzuk Many-body tunneling-theory approach to field emission of electrons from solids , 1969 .

[61]  J. L. Boling,et al.  Blunting of Tungsten Needles by Surface Diffusion , 1958 .

[62]  F. Hudda,et al.  Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .

[63]  W. P. Dyke,et al.  Electrical Stability and Life of the Heated Field Emission Cathode , 1960 .

[64]  J. W. Gadzuk,et al.  Surface States on Tungsten , 1970 .

[65]  W. Schottky Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern , 1918 .

[66]  R. Gomer,et al.  ADSORPTION OF INERT GASES ON TUNGSTEN: MEASUREMENTS ON SINGLE CRYSTAL PLANES. , 1970 .

[67]  E. Fawcett Magnetoresistance of Molybdenum and Tungsten , 1962 .

[68]  L. Swanson,et al.  Anomalous total energy distribution for a tungsten field emitter. , 1966 .

[69]  W. P. Dyke,et al.  The Field Emitter: Fabrication, Electron Microscopy, and Electric Field Calculations , 1953 .

[70]  A. Bennett,et al.  Theory of the Electronic Configuration of a Metallic Surface-Adsorbate System , 1966 .

[71]  R. Gomer,et al.  Structure and Properties of Solid Surfaces , 1953 .

[72]  Energy Distribution in Field Emission from Krypton Covered Tungsten , 1971 .

[73]  W. P. Dyke,et al.  Temperature-and-Field Emission of Electrons from Metals , 1954 .

[74]  Walter A. Harrison,et al.  Tunneling from an Independent-Particle Point of View , 1961 .

[75]  F. Forstmann On the theory of surface states in nearly free electron systems , 1970 .

[76]  R. Nowicki Influence of space-charge on potential barrier in field emission , 1967 .

[77]  R. Thomson Theory of Solids , 1962 .

[78]  L. Mattheiss FERMI SURFACE IN TUNGSTEN , 1965 .

[79]  C. Duke,et al.  Field Emission through Atoms Adsorbed on a Metal Surface , 1967 .

[80]  K. Takeda,et al.  Adsorption and Nucleation of Silver on Tungsten , 1970 .

[81]  R. Stratton Energy Distributions of Field Emitted Electrons , 1964 .

[82]  S. Christov General Theory of Electron Emission from Metals , 1966, September 1.

[83]  R. Gomer,et al.  Coadsorption of Hydrogen and Potassium on Tungsten. Adsorption of Hydrogen on Potassium , 1965 .

[84]  R. D. Young,et al.  ANOMALOUS WORK FUNCTION OF THE TUNGSTEN (110) PLANE , 1966 .

[85]  N. Mott,et al.  The Theory of the Properties of Metals and Alloys , 1933 .

[86]  C. Kuyatt,et al.  Electron Monochromator Design , 1967 .

[87]  R. Gomer,et al.  Electron‐Impact Desorption of Carbon Monoxide from Tungsten , 1964 .

[88]  J. W. Gadzuk,et al.  Energy Distributions for Thermal Field Emission , 1971 .

[89]  A. Melmed Surface Self‐Diffusion of Nickel and Platinum , 1967 .

[90]  E. Guth,et al.  Electron Emission of Metals in Electric Fields III. The Transition from Thermionic to Cold Emission , 1942 .

[91]  T. E. Everhart,et al.  Simplified Analysis of Point-Cathode Electron Sources , 1967 .

[92]  M. Drechsler Notizen:Erwärmung und Kühlung dünner Drähte durch Feldemission , 1963 .

[93]  A. Holscher A field emission retarding potential method for measuring work functions , 1966 .

[94]  C. Kuyatt,et al.  Field Emission Deflection Energy Analyzer , 1972 .

[95]  R. D. Young,et al.  Resonance tunneling of field emitted electrons through adsorbates on metal surfaces , 1969 .

[96]  M. De Handbuch der Physik , 1957 .

[97]  J. Johnson,et al.  The Schottky Effect in Low Frequency Circuits , 1925 .

[98]  R. CrowellC.,et al.  銀,ナトリウム,カリウムの真空蒸着膜の仕事関数の温度依存性 , 1959 .

[99]  D. Griffiths,et al.  The fermi surface areas of chromium, molybdenum and tungsten , 1962 .

[100]  J. Simpson High Resolution, Low Energy Electron Spectrometer , 1964 .

[101]  R. Gomer,et al.  Adsorption of Carbon Monoxide on Tungsten. Abundances, Dipole Moments, and Sticking Coefficients , 1966 .

[102]  M. C. Henderson Two Radioactive Substances from Magnesium after Deuteron Bombardment , 1935 .

[103]  L. Swanson,et al.  Energy exchanges attending field electron emission. , 1966 .

[104]  W. P. Dyke,et al.  Stable, High Density Field Emission Cold Cathode , 1960 .

[105]  P. C. Bettler,et al.  Field-emission studies of surface migration for tungsten, rhenium, iridium, and rhodium , 1968 .

[106]  M. Hofmann,et al.  Polarization of field emitted electrons from gadolinium in high magnetic fields , 1968 .

[107]  E. Plummer,et al.  Field Emission Energy Distributions of Hydrogen and Deuterium on the (100) and (110) Planes of Tungsten , 1972 .

[108]  R. Gomer,et al.  Desorption from Metal Surfaces by Low‐Energy Electrons , 1964 .

[109]  B. N. Brockhouse,et al.  Pseudopotentials in the theory of metals , 1966 .

[110]  R. Gomer,et al.  Adsorption of Potassium on Tungsten , 1965 .

[111]  A. Oostrom Temperature dependence of the work function of single crystal planes of tungsten in the range 78° – 293°K , 1963 .

[112]  W. Brinkman,et al.  Interface Effects in Normal Metal Tunneling , 1970 .

[113]  F. M. Charbonnier,et al.  Nottingham Effect in Field and T − F Emission: Heating and Cooling Domains, and Inversion Temperature , 1964 .

[114]  E. Müller,et al.  Progress in Field‐Emission Work‐Function Measurements of Atomically Perfect Crystal Planes , 1962 .

[115]  B. Blott,et al.  Band Edge at the (111) Surface of Copper Measured by the Total Energy Distribution of Field-Emitted Electrons , 1969 .

[116]  H. Gasse Untersuchungen zum Elementarvorgang des Funkelrauschens bei Feldemission , 1965 .

[117]  R. D. Young,et al.  Field-Emission Studies of Electronic Energy Levels of Adsorbed Atoms , 1970 .

[118]  P. H. Cutler,et al.  The effect of different surface barrier models on the Nottingham energy exchange process , 1967 .

[119]  J. W. Gadzuk Resonance-Tunneling Spectroscopy of Atoms Adsorbed on Metal Surfaces: Theory , 1970 .

[120]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[121]  E. V. Klimenko,et al.  Electron state of sodium atoms adsorbed on tungsten and effect of electric field on adsorption energy , 1969 .

[122]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[123]  P. C. Bettler,et al.  Activation Energy for the Surface Migration of Tungsten in the Presence of a High-Electric Field , 1960 .

[124]  A. V. Crewe,et al.  A High‐Resolution Scanning Transmission Electron Microscope , 1968 .

[125]  A. Modinos Effect of atomic cores on electron tunneling through layers of neutral adsorbates , 1970 .

[126]  R. Gomer,et al.  Adsorption of Oxygen on the (110) Plane of Tungsten , 1970 .

[127]  R. D. Young,et al.  Effect of Surface Patch Fields on Field-Emission Work-Function Determinations , 1966 .

[128]  B. B. Johnson,et al.  Photoelectric work function measurements on nickel crystals and films , 1971 .

[129]  E. Müller,et al.  Experimental Measurement of the Total-Energy Distribution of Field-Emitted Electrons , 1959 .

[130]  W. P. Dyke Field Emission, A Newly Practical Electron Source , 1960, IRE Transactions on Military Electronics.