Thermophotovoltaic Efficiency Enhancement through Metamaterial Selective Emitters

Applying thermophotovoltaics (TPV) to present energy production technologies allows us to increase energy output while utilizing existing infrastructure by reclaiming the heat lost during the production process. In order to maximize the efficiency of these sources, the conversion efficiency of the TPV system needs to be optimized. Using metamaterials, we have created selective emitters that tailor the incident light spectrum to the band gap of specific diodes, offering the potential to reduce diode heating and increase efficiency. Usage of metals such as platinum and molybdenum makes the emitters able to withstand the high temperatures required to create ideal spectra for III-V cells. Simulations from CST Microwave Studio were used in the design process and testing of the emitters includes heat tests and SEM analysis.

[1]  M. Planck Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .

[2]  Thomas E. Vandervelde,et al.  Thermophotovoltaics: An Alternative to and Potential Partner with Rectenna Energy Harvesters , 2013 .

[3]  Sanjay Krishna,et al.  Quantum dot infrared photodetectors with highly tunable spectral response for an algorithm-based spectrometer , 2010, Defense + Commercial Sensing.

[4]  S. Krishna,et al.  Multispectral Quantum Dots-in-a-Well Infrared Detectors Using Plasmon Assisted Cavities , 2010, IEEE Journal of Quantum Electronics.

[5]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[6]  S. Krishna,et al.  High Operating Temperature InAs Quantum Dot Infrared Photodetector via Selective Capping Techniques , 2008, 2008 8th IEEE Conference on Nanotechnology.

[7]  Yagya D. Sharma,et al.  Low strain quantum dots in a double well infrared detector , 2008, Optical Engineering + Applications.

[8]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[9]  T. Vandervelde,et al.  Investigating thallium-based materials for use in multijunction photovoltaics , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[10]  G. Karunasiri,et al.  Narrowband terahertz emitters using metamaterial films. , 2012, Optics express.

[11]  S. Krishna,et al.  Comparison of Long-Wave Infrared Quantum-Dots-in-a-Well and Quantum-Well Focal Plane Arrays , 2009, IEEE Transactions on Electron Devices.

[12]  Pallab Bhattacharya,et al.  Quantum dot infrared photodetectors , 2002, SPIE OPTO.

[13]  R. S. Attaluri,et al.  Low-strain InAs∕InGaAs∕GaAs quantum dots-in-a-well infrared photodetector , 2008 .

[14]  S. Krishna,et al.  Multiple stack quantum dot infrared photodetectors , 2008, Security + Defence.

[15]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[16]  Gennady Shvets,et al.  Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems , 2011 .

[17]  T. Vandervelde,et al.  Comparison of Photonic-Crystal-Enhanced Thermophotovoltaic Devices With and Without a Resonant Cavity , 2012, Journal of Electronic Materials.

[18]  Frank Rutz,et al.  InAs/GaSb superlattice infrared detectors , 2013 .

[19]  A. Stintz,et al.  Enhanced normal incidence photocurrent in quantum dot infrared photodetectors , 2011 .

[20]  Thomas E. Vandervelde,et al.  Simulations of Gallium Antimonide (GaSb) p-B-n Thermophotovoltaic Cells , 2011 .

[21]  S. Krishna,et al.  Demonstration of Bias-Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors , 2009, IEEE Journal of Quantum Electronics.

[22]  Cryogenic thermal simulator for testing low temperature thermophotovoltaic cellsa) , 2011 .

[23]  Sanjay Krishna,et al.  Progress and prospects for quantum dots in a well infrared photodetectors. , 2010, Journal of nanoscience and nanotechnology.

[24]  C. Shemelya,et al.  Theromophotovoltaic Enhancement: 2D Photonic Crystals to Increase TPV Efficiencies , 2009 .

[25]  Willie J Padilla,et al.  Taming the blackbody with infrared metamaterials as selective thermal emitters. , 2011, Physical review letters.

[26]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[27]  Thomas E. Vandervelde,et al.  Progress in Infrared Photodetectors Since 2000 , 2013, Sensors.

[28]  Photonic crystal resonant cavity for thermophotovoltaic applications , 2011, 2011 37th IEEE Photovoltaic Specialists Conference.

[29]  S. Krishna,et al.  Resonant Tunneling Barriers in Quantum Dots-in-a-Well Infrared Photodetectors , 2010, IEEE Journal of Quantum Electronics.

[30]  Sanjay Krishna,et al.  Reduction in dark current using resonant tunneling barriers in quantum dots-in-a-well long wavelength infrared photodetector , 2008 .

[31]  Nicholas X. Fang,et al.  Imaging properties of a metamaterial superlens , 2003 .

[32]  S Krishna,et al.  Versatile Spectral Imaging With an Algorithm-Based Spectrometer Using Highly Tuneable Quantum Dot Infrared Photodetectors , 2011, IEEE Journal of Quantum Electronics.

[33]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[34]  S. Krishna,et al.  Quantum Dots-in-a-Well Focal Plane Arrays , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  Sanjay Krishna,et al.  A multispectral and polarization-selective surface-plasmon resonant midinfrared detector , 2009, 0907.2945.