Hydrogen Storage in Carbon Nanostructures: Possibilities and Challenges for Fundamental Molecular Simulations

This paper discusses the potential for hydrogen storage in carbon nanostructures through a better understanding at the fundamental molecular level. The use of hydrogen as a fuel is limited in large part because of lack of progress in developing suitable storage and delivery systems. Materials that adsorb significant quantities of hydrogen are therefore urgently needed. The special hydrogen adsorbing characteristics of carbon nanomaterials make them rather suited as hydrogen storage devices. Due to their high surface area and capillarity, carbon nanotubes have high hydrogen storage capacity. A background of the hydrogen storage problem with carbon nanotubes is provided and the issues to be resolved have been highlighted. Future directions to address these challenges have also been suggested. We make a case that molecular simulation studies can identify the most promising structures and compositions to maximize hydrogen storage

[1]  A. D. Crowell,et al.  Laterally averaged interaction potentials for 1H2 and 2H2 on the (0001) graphite surface , 1982 .

[2]  J. Heremans Electrical conductivity of vapor-grown carbon fibers , 1985 .

[3]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[4]  Sohail Murad,et al.  Molecular simulation of osmosis, reverse osmosis, and electro-osmosis in aqueous and methanolic electrolyte solutions , 1998 .

[5]  Michele Parrinello,et al.  Review of theoretical calculations of hydrogen storage in carbon-based materials , 2001 .

[6]  P. Bernier,et al.  Nano-mechanical cutting and opening of single wall carbon nanotubes , 2000 .

[7]  W. Goddard,et al.  Position of K atoms in doped single-walled carbon nanotube crystals , 1998 .

[8]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[9]  Ji Liang,et al.  Hydrogen storage of dense-aligned carbon nanotubes , 2001 .

[10]  Heremans,et al.  Thermal conductivity and thermopower of vapor-grown graphite fibers. , 1985, Physical review. B, Condensed matter.

[11]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[12]  De-hai Wu,et al.  Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance , 2005 .

[13]  Young Hee Lee,et al.  Hydrogen storage in single-walled carbon nanotubes , 2000 .

[14]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[15]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[16]  S. Han,et al.  ADSORPTION PROPERTIES OF HYDROGEN ON (10, 0) SINGLE-WALLED CARBON NANOTUBE THROUGH DENSITY FUNCTIONAL THEORY , 2004 .

[17]  M. V. Lototsky,et al.  Hydrogen sorption properties of arc generated single-wall carbon nanotubes , 2003 .

[18]  Density functional study of molecular hydrogen coverage on carbon nanotubes , 2006 .

[19]  C. Gu,et al.  Simulation study of hydrogen storage in single walled carbon nanotubes , 2001 .

[20]  Swarnendu Sen,et al.  Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles , 2004 .

[21]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[22]  S. Yamanaka,et al.  Hydrogen content and desorption of carbon nano-structures , 2004 .

[23]  J. G. Powles,et al.  A computer simulation study of fluids in model slit, tubular, and cubic micropores , 1993 .

[24]  P. Gordon,et al.  Molecular modeling of adsorptive energy storage: Hydrogen storage in single-walled carbon nanotubes , 1999 .

[25]  J. Johnson,et al.  MOLECULAR SIMULATION OF HYDROGEN ADSORPTION IN SINGLE-WALLED CARBON NANOTUBES AND IDEALIZED CARBON SLIT PORES , 1999 .

[26]  Natarajan Rajalakshmi,et al.  Electrochemical investigation of single-walled carbon nanotubes for hydrogen storage , 2000 .

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Gary G. Tibbetts,et al.  Hydrogen storage capacity of carbon nanotubes, filaments, and vapor-grown fibers , 2001 .

[29]  Andreas Züttel,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[30]  Peter C. Eklund,et al.  Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes , 2000 .

[31]  Andreas Züttel,et al.  Electrochemical Storage of Hydrogen in Nanotube Materials , 1999 .

[32]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[33]  C. R. Martin,et al.  Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production , 1999 .

[34]  P. Eklund,et al.  Transport properties of alkali-metal-doped single-wall carbon nanotubes , 1998 .

[35]  Chen,et al.  High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures , 1999, Science.

[36]  J. Fierro,et al.  Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample reduction , 2004 .

[37]  E. Yoo,et al.  Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials , 2005 .

[38]  P. Strevens Iii , 1985 .

[39]  S. Murad,et al.  The role of external electric fields in membrane-based separation processes: a molecular dynamics study , 2001 .

[40]  J. Karl Johnson,et al.  Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption. , 1999 .

[41]  Gary G. Tibbetts,et al.  Thermogravimetric Measurement of Hydrogen Absorption in Alkali-Modified Carbon Materials , 2000 .

[42]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[43]  M. Sheng,et al.  High H 2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures , 2022 .

[44]  Ju Li,et al.  Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures , 2003 .

[45]  G. Kearley,et al.  Hydrogen adsorption in carbon nanostructures compared , 2004 .

[46]  Peter Lamp,et al.  Physisorption of Hydrogen on Microporous Carbon and Carbon Nanotubes , 1998 .

[47]  B. Stansfield,et al.  On the control of carbon nanostructures for hydrogen storage applications , 2004 .

[48]  D. Schiraldi,et al.  Processing, structure, and properties of fibers from polyester/carbon nanofiber composites , 2003 .

[49]  Cailu Xu,et al.  Hydrogen adsorption in bundles of well-aligned carbon nanotubes at room temperature , 2001 .

[50]  Guichang Wang,et al.  Theoretical investigation on the hydrogenation of armchair single-walled carbon nanotubes , 2003 .

[51]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[52]  Robert C. Bowman,et al.  Hydrogen desorption and adsorption measurements on graphite nanofibers , 1998 .

[53]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[54]  Jörg Fink,et al.  Hydrogen storage in carbon nanostructures , 2002 .

[55]  J. Karl Johnson,et al.  Optimization of Carbon Nanotube Arrays for Hydrogen Adsorption , 1999 .

[56]  A. Lueking,et al.  Erratum: Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes - Implications for hydrogen storage (Journal of Catalysis (2002) 206: 1 (165-168) PII: S0021951701934724) , 2002 .

[57]  A. Züttel,et al.  Hydrogen in the mechanically prepared nanostructured graphite , 1999 .

[58]  Yan Sun,et al.  Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials☆ , 2006 .

[59]  V. Simonyan,et al.  Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes , 1999 .

[60]  T Yildirim,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.

[61]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[62]  B. Mcenaney,et al.  Molecular Simulations of Hydrogen Storage in Carbon Nanotube Arrays , 2000 .

[63]  Broughton,et al.  Nanocapillarity in fullerene tubules. , 1992, Physical review letters.

[64]  Kenneth A. Smith,et al.  Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes , 1999 .

[65]  T. Ichihashi,et al.  Opening carbon nanotubes with oxygen and implications for filling , 1993, Nature.

[66]  S. Murad,et al.  Molecular simulations of ion exchange in NaA zeolite membranes , 2003 .

[67]  Victor V. Goldman,et al.  The isotropic intermolecular potential for H2 and D2 in the solid and gas phases , 1978 .

[68]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[69]  R. T. Yang,et al.  Hydrogen Spillover to Enhance Hydrogen Storage -- Study of the Effect of Carbon Physicochemical Properties , 2004 .

[70]  Gary P. Morriss,et al.  Statistical Mechanics of Nonequilibrium Liquids , 2008 .

[71]  Hui-Ming Cheng,et al.  Hydrogen uptake in vapor-grown carbon nanofibers , 1999 .

[72]  H. Takikawa,et al.  Hydrogen sorption by single-walled carbon nanotubes prepared by a torch arc method , 2002 .

[73]  J. M. Haile,et al.  Molecular dynamics simulation : elementary methods / J.M. Haile , 1992 .

[74]  Huifang Xu,et al.  The role of carbon nanotube structure in purification and hydrogen adsorption , 2004 .

[75]  Angela D. Lueking,et al.  Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage , 2002 .

[76]  Malcolm L. H. Green,et al.  Thinning and opening of carbon nanotubes by oxidation using carbon dioxide , 1993, Nature.

[77]  M. Hirscher,et al.  Are carbon nanostructures an efficient hydrogen storage medium , 2003 .

[78]  M. Hirscher,et al.  Interaction of hydrogen isotopes with carbon nanostructures , 2004 .

[79]  M. Shaijumon,et al.  Catalytic growth of carbon nanotubes over Ni/Cr hydrotalcite-type anionic clay and their hydrogen storage properties , 2005 .

[80]  Xueping Gao,et al.  Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers , 2004 .

[81]  Mark J. Dyer,et al.  Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope , 1999 .

[82]  J. L. Duggan,et al.  Direct measurement of hydrogen adsorption in carbon nanotubes/nanofibers by elastic recoil detection , 2006 .

[83]  O. Srivastava,et al.  Ball-milled carbon and hydrogen storage , 2002 .

[84]  J. Johnson,et al.  Computer Simulations of Hydrogen Adsorption on Graphite Nanofibers , 1999 .

[85]  James A. Schwarz,et al.  Hydrogen storage on superactivated carbon at refrigeration temperatures , 1989 .

[86]  Kee Suk Nahm,et al.  Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles , 2005 .

[87]  B. Wei,et al.  Annealing amorphous carbon nanotubes for their application in hydrogen storage , 2003 .

[88]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[89]  R. T. Yang,et al.  Hydrogen storage by alkali-doped carbon nanotubes–revisited , 2000 .

[90]  Thomas Frauenheim,et al.  Hydrogen adsorption and storage in carbon nanotubes , 2000 .

[91]  Hongwei Zhu,et al.  Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method , 2003 .

[92]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[93]  M. W. Cole,et al.  Hydrogen Adsorption in Nanotubes , 1998 .

[94]  F. Cleri,et al.  Role of surface chemistry in hydrogen adsorption in single-wall carbon nanotubes , 2003 .

[95]  Yaping Zhou,et al.  Enhanced storage of hydrogen at the temperature of liquid nitrogen , 2004 .

[96]  Seiji Akita,et al.  Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope , 2001 .

[97]  Yaping Zhou,et al.  A comparative study of hydrogen adsorption on superactivated carbon versus carbon nanotubes , 2004 .

[98]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[99]  David L. Price,et al.  Neutron scattering study of H2 adsorption in single-walled carbon nanotubes , 2001 .

[100]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[101]  H. Dodziuk,et al.  Molecular modeling study of hydrogen storage in carbon nanotubes , 2002 .

[102]  D. Lévesque,et al.  High Adsorptive Property of Opened Carbon Nanotubes at 77 K , 2000 .