Quantification of hydrogen trapping in multiphase steels: Part II – Effect of austenite morphology

[1]  I. De Graeve,et al.  Critical assessment of the evaluation of thermal desorption spectroscopy data for duplex stainless steels: A combined experimental and numerical approach , 2020 .

[2]  I. De Graeve,et al.  Electrochemical Hydrogen Charging of Duplex Stainless Steel , 2019, CORROSION.

[3]  V. Barnier,et al.  SKPFM study of hydrogen in a two phase material. Experiments and modelling , 2019, International Journal of Hydrogen Energy.

[4]  S. Lenka,et al.  Study of hydrogen release resulting from the transformation of austenite into martensite , 2019, Materials Science and Engineering: A.

[5]  P. Rivera-Díaz-del-Castillo,et al.  Grain boundary carbides as hydrogen diffusion barrier in a Fe-Ni alloy: A thermal desorption and modelling study , 2018, Materials & Design.

[6]  C. Dong,et al.  Hydrogen permeation in 2205 duplex stainless steel under hydrostatic pressure and simulation by COMSOL , 2018, Materials and Corrosion.

[7]  P. Rivera-Díaz-del-Castillo,et al.  Correlation between vanadium carbide size and hydrogen trapping in ferritic steel , 2018, Scripta Materialia.

[8]  J. Neugebauer,et al.  Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures , 2018 .

[9]  J. Kelleher,et al.  Effect of hydrogen charging on dislocation multiplication in pre-strained super duplex stainless steel , 2018 .

[10]  D. Eliezer,et al.  Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels , 2017 .

[11]  M. Enomoto Simulation of thermal desorption spectrum of hydrogen from austenite embedded in the martensite matrix , 2017 .

[12]  M. Mochizuki,et al.  Modeling of Hydrogen Diffusion Behavior Considering the Microstructure of Duplex Stainless Steel Weld Metal , 2017 .

[13]  L. Du,et al.  Hydrogen permeation behavior in relation to microstructural evolution of low carbon bainitic steel weldments , 2016 .

[14]  J. Neugebauer,et al.  First-principles investigation of hydrogen interaction with TiC precipitates in α -Fe , 2016 .

[15]  N. Chen,et al.  Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure , 2016 .

[16]  M. Koyama,et al.  Hydrogen Embrittlement Susceptibility of Fe-Mn Binary Alloys with High Mn Content: Effects of Stable and Metastable ε-Martensite, and Mn Concentration , 2016, Metallurgical and Materials Transactions A.

[17]  M. J. Peet,et al.  Hydrogen Susceptibility of Nanostructured Bainitic Steels , 2016, Metallurgical and Materials Transactions A.

[18]  Christian Elsässer,et al.  First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel , 2015 .

[19]  Jesús Toribio,et al.  A generalised model of hydrogen diffusion in metals with multiple trap types , 2015 .

[20]  D. Eliezer,et al.  Hydrogen trapping mechanism of different duplex stainless steels alloys , 2015 .

[21]  D. Suh,et al.  Hydrogen diffusion and the percolation of austenite in nanostructured bainitic steel , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[22]  R. Johnsen,et al.  FE simulation of hydrogen diffusion in duplex stainless steel , 2014 .

[23]  B. L. D. Silva,et al.  Hydrogen Embrittlement in Super Duplex Stainless Steel Tubes UNS S32750 Under Mechanical Stress , 2014 .

[24]  K. Kawakami,et al.  Visualization of deuterium flux and grain boundary diffusion in duplex stainless steel and Fe–30 % Ni alloy, using secondary ion mass spectrometry equipped with a Ga focused ion beam , 2014, Journal of Materials Science.

[25]  Stephan Brauser,et al.  Quantification of hydrogen effective diffusion coefficients and effusion behavior in duplex stainless steel weld metals , 2013, Welding in the World.

[26]  E. Kozeschnik,et al.  Interstitial diffusion in systems with multiple sorts of traps , 2013 .

[27]  Tobias Mente,et al.  Modeling Of Hydrogen Distributionin A Duplex Stainless Steel , 2012, Welding in the World.

[28]  S. Kim,et al.  Electrochemical hydrogen permeation measurement through TRIP steel under loading condition of phase transition , 2012 .

[29]  K. Kawakami,et al.  Numerical Analysis of Hydrogen Trap State by TiC and V4C3 in bcc-Fe , 2012 .

[30]  K. Verbeken,et al.  Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy , 2012 .

[31]  K. Verbeken,et al.  Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel , 2012 .

[32]  X. Feaugas,et al.  Computational analysis of geometrical factors affecting experimental data extracted from hydrogen pe , 2012 .

[33]  R. Drautz,et al.  First-principles study on the interaction of H interstitials with grain boundaries in alpha- and gamma-Fe , 2011 .

[34]  Stephan Brauser,et al.  Hydrogen absorption of different welded duplex steels , 2010 .

[35]  C. S. Marchi,et al.  Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures , 2007 .

[36]  G. Nolze,et al.  Hydrogen Induced Phase Transformations in Austenitic-Ferritic Steel , 2006 .

[37]  R. Kaçar Effect of solidification mode and morphology of microstructure on the hydrogen content of duplex stainless steel weld metal , 2004 .

[38]  Jiann-Kuo Wu,et al.  Effects of deformation on hydrogen degradation in a duplex stainless steel , 2004 .

[39]  Jiann-Kuo Wu,et al.  Hydrogen transport and degradation of a commercial duplex stainless steel , 2002 .

[40]  T. Zakroczymski,et al.  Electrochemical investigation of hydrogen absorption in a duplex stainless steel , 2002 .

[41]  D. Olson,et al.  Retained austenite as a hydrogen trap in steel welds , 2002 .

[42]  T. Zakroczymski,et al.  Hydrogen transport in a duplex stainless steel , 2000 .

[43]  F. Iacoviello,et al.  Hydrogen embrittlement in the duplex stainless steel Z2CND2205 hydrogen-charged at 200°C , 1997 .

[44]  D. Edmonds,et al.  Application of the hydrogen microprint and the microautoradiography techniques to a duplex stainless steel , 1995 .

[45]  A. Turnbull,et al.  Analysis of hydrogen atom transport in a two phase alloy. , 1994 .

[46]  S. Chan,et al.  Effect of retained austenite on the hydrogen content and effective diffusivity of martensitic structure , 1991 .

[47]  Jean-Louis Auriault,et al.  Heterogeneous medium. Is an equivalent macroscopic description possible , 1991 .

[48]  J. Wu,et al.  Electrochemical methods for studying hydrogen diffusivity, permeability, and solubility in AISI 420 and AISI 430 stainless steels , 1989 .

[49]  C. Altstetter,et al.  Effects of deformation on hydrogen permeation in austenitic stainless steels , 1986 .

[50]  J. Leblond,et al.  A general mathematical description of hydrogen diffusion in steels—I. Derivation of diffusion equations from boltzmann-type transport equations , 1983 .

[51]  R. Mclellan,et al.  The solubility and diffusivity of hydrogen in well-annealed and deformed iron , 1983 .

[52]  M. Isshiki,et al.  HYDROGEN DIFFUSIVITY IN HIGH PURITY ALPHA IRON , 1982 .

[53]  A. Szummer,et al.  Hydride Phases in Austenitic Stainless Steels , 1979 .

[54]  S. Hofmann,et al.  A model of the kinetics and equilibria of surface segregation in the monolayer regime , 1978 .

[55]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .

[56]  Z. Stachurski,et al.  The adsorption and diffusion of electrolytic hydrogen in palladium , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[57]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .