Pruning Medial Axes

The medial axis is an attractive shape feature; however, its high sensitivity to boundary noise hinders its use in many applications. In order to overcome the sensitivity problem some regularization has to be performed. Pruning is a family of medial axis regularization processes, incorporated in most skeletonization and thinning algorithms. Pruning algorithms usually appear in a variety of application-dependent formulations. Inconsistent terminology used until now prevented analysis and comparison of the various pruning methods. Indeed many seemingly different algorithms are in fact equivalent. In this paper we suggest the rate pruning paradigm as a standard for pruning methods. The proposed paradigm is a framework in which it is easy to analyze, compare, and tailor new pruning methods. We analyze existing pruning methods, propose two new methods, and compare the methods via a model-based analysis. The theoretical analysis is supported by simulation results of the various pruning methods.

[1]  H. Blum Biological shape and visual science (part I) , 1973 .

[2]  Stéphane Ubéda,et al.  A Parallel Thinning Algorithm Using K x K Masks , 1993, Int. J. Pattern Recognit. Artif. Intell..

[3]  Frederic Fol Leymarie,et al.  Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Markus Ilg,et al.  Voronoi skeletons: theory and applications , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Martin D. Levine,et al.  Multiple Resolution Skeletons , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ching Y. Suen Thinning Methodologies for Pattern Recognition , 1994 .

[7]  Azriel Rosenfeld,et al.  Axial representations of shape , 1986, Computer Vision Graphics and Image Processing.

[8]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[9]  J. Sethian Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws , 1990 .

[10]  Gabriella Sanniti di Baja Well-Shaped, Stable, and Reversible Skeletons from the (3, 4)-Distance Transform , 1994, J. Vis. Commun. Image Represent..

[11]  Olaf Kübler,et al.  Hierarchic Voronoi skeletons , 1995, Pattern Recognit..

[12]  Steven J. Ruuth Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature , 1998 .

[13]  Azriel Rosenfeld,et al.  A Note on Thinning , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[15]  Carlo Arcelli,et al.  Pattern thinning by contour tracing , 1981 .

[16]  D. Lee,et al.  Skeletonization via Distance Maps and Level Sets , 1995 .

[17]  Ugo Montanari,et al.  A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance , 1968, J. ACM.

[18]  V. Ralph Algazi,et al.  Continuous skeleton computation by Voronoi diagram , 1991, CVGIP Image Underst..

[19]  Gabriella Sanniti di Baja,et al.  A Width-Independent Fast Thinning Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Wayne Niblack,et al.  Generating connected skeletons for exact and approximate reconstruction , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[21]  Stephen M. Pizer,et al.  Hierarchical Shape Description Via the Multiresolution Symmetric Axis Transform , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Jean Chorowicz,et al.  Parametrisable skeletonization of binary and multi-level images , 1990, Pattern Recognit. Lett..

[23]  Ugo Montanari,et al.  Continuous Skeletons from Digitized Images , 1969, JACM.

[24]  John M. Gauch,et al.  The Intensity Axis of Symmetry and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Alfred M. Bruckstein,et al.  The Curve Axis , 1996, Comput. Vis. Image Underst..

[26]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[27]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[28]  Jean Ponce,et al.  On characterizing ribbons and finding skewed symmetries , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[29]  MokhtarianFarzin,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992 .

[30]  Gabriella Sanniti di Baja,et al.  Pruning Discrete and Semiocontinuous Skeletons , 1995, ICIAP.

[31]  Charles R. Dyer,et al.  Shape Smoothing Using Medial Axis Properties , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[33]  Farzin Mokhtarian,et al.  Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[35]  Alfred M. Bruckstein,et al.  Skeletonization via Distance Maps and Level Sets , 1995, Comput. Vis. Image Underst..

[36]  HARRY BLUM,et al.  Shape description using weighted symmetric axis features , 1978, Pattern Recognit..

[37]  Claus Gerhardt,et al.  Flow of nonconvex hypersurfaces into spheres , 1990 .

[38]  Gabriella Sanniti di Baja,et al.  Euclidean skeleton via centre-of-maximal-disc extraction , 1993, Image Vis. Comput..