On the Generation and Enumeration of some Classes of Convex Polyominoes
暂无分享,去创建一个
[1] Kenneth H. Rosen,et al. Catalan Numbers , 2002 .
[2] Gérard Viennot,et al. Algebraic Languages and Polyominoes Enumeration , 1983, Theor. Comput. Sci..
[3] Andrea Frosini,et al. A Note on Rational Succession Rules , 2003 .
[4] I. Dutour,et al. Object grammars and random generation , 1998, Discret. Math. Theor. Comput. Sci..
[5] Elena Barcucci,et al. Exhaustive generation of combinatorial objects by ECO , 2004, Acta Informatica.
[6] Anthony J. Guttmann,et al. Enumeration of three-dimensional convex polygons , 1997 .
[7] Brendan D. McKay,et al. Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.
[8] Fan Chung Graham,et al. The Number of Baxter Permutations , 1978, J. Comb. Theory, Ser. A.
[9] K. Lin,et al. Rigorous results for the number of convex polygons on the square and honeycomb lattices , 1988 .
[10] D. Kleitman,et al. Covering Regions by Rectangles , 1981 .
[11] David Avis,et al. Reverse Search for Enumeration , 1996, Discret. Appl. Math..
[12] Alberto Del Lungo,et al. ECO:a methodology for the enumeration of combinatorial objects , 1999 .
[13] S. Rinaldi,et al. How the odd terms in the Fibonacci sequence stack up , 2006, The Mathematical Gazette.
[14] S. W. Golomb,et al. Checker Boards and Polyominoes , 1954 .
[15] D. Hugh Redelmeier,et al. Counting polyominoes: Yet another attack , 1981, Discret. Math..
[16] Mireille Bousquet-Mélou,et al. Generating functions for generating trees , 2002, Discret. Math..
[17] Julian West,et al. Generating trees and forbidden subsequences , 1996, Discret. Math..
[18] Renzo Pinzani,et al. Jumping succession rules and their generating functions , 2003, Discret. Math..
[19] N. J. A. Sloane,et al. The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..
[20] Anthony J. Guttmann,et al. Exact solution of the row-convex polygon perimeter generating function , 1990 .
[21] Svjetlan Feretic. A new way of counting the column-convex polyominoes by perimeter , 1998, Discret. Math..
[22] Marie-Pierre Delest,et al. Generating functions for column-convex polyominoes , 1988, J. Comb. Theory, Ser. A.
[23] D. G. Rogers,et al. THE CATALAN NUMBERS, THE LEBESGUE INTEGRAL, AND 4N-2 , 1997 .
[24] Julian West,et al. Generating trees and the Catalan and Schröder numbers , 1995, Discret. Math..
[25] Renzo Pinzani,et al. An algebraic characterization of the set of succession rules , 2002, Theor. Comput. Sci..
[26] H. Temperley. Combinatorial Problems Suggested by the Statistical Mechanics of Domains and of Rubber-Like Molecules , 1956 .
[27] Ira M. Gessel,et al. On the number of convex polyominoes , 2000 .
[28] J. Hammersley. Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.
[29] Danièle Beauquier,et al. On translating one polyomino to tile the plane , 1991, Discret. Comput. Geom..
[30] Mireille Bousquet-Mélou,et al. A method for the enumeration of various classes of column-convex polygons , 1996, Discret. Math..
[31] Jeffrey C. Lagarias,et al. Tiling with polyominoes and combinatorial group theory , 1990, J. Comb. Theory, Ser. A.