Core concepts for share vectors

A value mapping for cooperative games with transferable utilities is a mapping that assigns to every game a set of vectors each representing a distribution of the payoffs. A value mapping is efficient if to every game it assigns a set of vectors which components all sum up to the worth that can be obtained by all players cooperating together. An approach to efficiently allocate the worth of the `grand coalition' is using share mappings which assign to every game a set of share vectors being vectors which components sum up to one. Every component of a share vector is the corresponding players' share in the total payoff that is to be distributed among the players. In this paper we discuss a class of share mappings containing the (Shapley) share-core, the Banzhaf share-core and the Large Banzhaf share-core, and provide characterizations of this class of share mappings.