On Many-Body Localization for Quantum Spin Chains

For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local unitary transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors.

[1]  J. Imbrie Multi-Scale Jacobi Method for Anderson Localization , 2014, 1406.2957.

[2]  A. B. D. Monvel,et al.  Dynamical localization for a multi-particle model with an alloy-type external random potential , 2011 .

[3]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[4]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[5]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[6]  Y. Fyodorov,et al.  Localization transition in the Anderson model on the Bethe lattice: Spontaneous symmetry breaking and correlation functions , 1991 .

[7]  Y. Suhov,et al.  Multi-particle Anderson Localisation: Induction on the Number of Particles , 2008, 0811.2530.

[8]  Stability Analysis of the Hubbard Model , 2001, cond-mat/0106604.

[9]  Interacting electrons in disordered wires: Anderson localization and low-T transport. , 2005, Physical review letters.

[10]  Y. Suhov,et al.  Eigenfunctions in a Two-Particle Anderson Tight Binding Model , 2008, 0810.2190.

[11]  Philip W. Anderson,et al.  Infrared Catastrophe in Fermi Gases with Local Scattering Potentials , 1967 .

[12]  P. Anderson,et al.  Interactions and the Anderson transition , 1980 .

[13]  Wilson,et al.  Renormalization of Hamiltonians. , 1993, Physical review. D, Particles and fields.

[14]  E. Dinaburg,et al.  Methods of KAM-theory for long-range quasi-periodic operators on ℤv. Pure point spectrum , 1993 .

[15]  C. O. Escobar,et al.  Entanglement versus chaos in disordered spin chains , 2004 .

[16]  Israel Michael Sigal,et al.  Renormalization Group Analysis of Spectral Problems in Quantum Field Theory , 1998 .

[17]  Y. Sinai,et al.  THE EXPONENTIAL LOCALIZATION AND STRUCTURE OF THE SPECTRUM FOR 1D QUASI-PERIODIC DISCRETE SCHRÖDINGER OPERATORS , 1991 .

[18]  Michael Fauser,et al.  Multiparticle localization for disordered systems on continuous space via the fractional moment method , 2014, 1402.5832.

[19]  J. Imbrie,et al.  Level Spacing for Non-Monotone Anderson Models , 2015, 1506.06692.

[20]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[21]  Dynamical Localization in Disordered Quantum Spin Systems , 2011, 1108.3811.

[22]  N. Datta,et al.  Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states , 1996 .

[23]  B. Bauer,et al.  Area laws in a many-body localized state and its implications for topological order , 2013, 1306.5753.

[24]  L. Eliasson Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum , 1997 .

[25]  J. Schrieffer,et al.  Relation between the Anderson and Kondo Hamiltonians , 1966 .

[26]  A. Scardicchio,et al.  Integrals of motion in the many-body localized phase , 2014, 1406.2175.

[27]  Z Papić,et al.  Local conservation laws and the structure of the many-body localized states. , 2013, Physical review letters.

[28]  Michael Aizenman,et al.  Random Operators: Disorder Effects on Quantum Spectra and Dynamics , 2015 .

[29]  Thomas Spencer,et al.  Self-avoiding walk in 5 or more dimensions , 1985 .

[30]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[31]  N. Datta,et al.  Effective Hamiltonians and Phase Diagrams for Tight-Binding Models , 1998, math-ph/9809007.

[32]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[33]  M. Aizenman,et al.  Localization Bounds for Multiparticle Systems , 2008, 0809.3436.

[34]  W. De Roeck,et al.  Asymptotic Quantum Many-Body Localization from Thermal Disorder , 2013, 1308.6263.

[35]  D. Huse,et al.  Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.

[36]  Stanis Law,et al.  Renormalization of Hamiltonians , 1997 .

[37]  R. Lima,et al.  A metal-insulator transition for the almost Mathieu model , 1983 .

[38]  R. Brockett,et al.  Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[39]  L. Eliasson Perturbations of linear quasi-periodic system , 2002 .

[40]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[41]  T. Giamarchi,et al.  Localization and interaction in one-dimensional quantum fluids , 1987 .

[42]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[43]  Flow equations and normal ordering: a survey , 2005, cond-mat/0511660.

[44]  P. Deift,et al.  Ordinary differential equations and the symmetric eigenvalue problem , 1983 .

[45]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[46]  A. Klein,et al.  Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians , 2013, 1311.4220.

[47]  T. Prosen,et al.  Many-body localization in the Heisenberg XXZ magnet in a random field , 2007, 0706.2539.

[48]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[50]  E. Scoppola,et al.  Localization inv-dimensional incommensurate structures , 1983 .

[51]  A. Klein,et al.  The Bootstrap Multiscale Analysis for the Multi-particle Anderson Model , 2012, 1212.5638.

[52]  D. Huse,et al.  Phenomenology of fully many-body-localized systems , 2013, 1408.4297.

[53]  D. Huse,et al.  Many-body localization phase transition , 2010, 1003.2613.

[54]  V. Chulaevsky Direct Scaling Analysis of localization in disordered systems. II. Multi-particle lattice systems , 2011, 1106.2234.

[55]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.