High breakdown point robust regression with censored data

In this paper, we propose a class of high breakdown point estimators for the linear regression model when the response variable contains censored observations. These estimators are robust against high-leverage outliers and they generalize the LMS (least median of squares), S, MM and τ-estimators for linear regression. An important contribution of this paper is that we can define consistent estimators using a bounded loss function (or equivalently, a redescending score function). Since the calculation of these estimators can be computationally costly, we propose an efficient algorithm to compute them. We illustrate their use on an example and present simulation studies that show that these estimators also have good finite sample properties.

[1]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[2]  N. Breslow,et al.  A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship , 1974 .

[3]  Zhiliang Ying,et al.  Large Sample Theory of a Modified Buckley-James Estimator for Regression Analysis with Censored Data , 1991 .

[4]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[5]  I. R. James,et al.  Consistency Results for Linear Regression with Censored Data , 1984 .

[6]  I. James,et al.  Linear regression with censored data , 1979 .

[7]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[8]  V. Yohai,et al.  A Minimax-Bias Property of the Least $\alpha$-Quantile Estimates , 1993 .

[9]  B. Efron The two sample problem with censored data , 1967 .

[10]  Laurence L. George,et al.  The Statistical Analysis of Failure Time Data , 2003, Technometrics.

[11]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[12]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[13]  Ola Hössjer,et al.  On the optimality of S-estimators☆ , 1992 .

[14]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[15]  R. Welsch,et al.  Efficient Bounded-Influence Regression Estimation , 1982 .

[16]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[17]  W. S. Krasker Estimation in Linear Regression Models with Disparate Data Points , 1980 .

[18]  Winfried Stute,et al.  Distributional Convergence under Random Censorship when Covariables are Present , 1996 .

[19]  Ya'acov Ritov,et al.  Estimation in a Linear Regression Model with Censored Data , 1990 .

[20]  V. Yohai,et al.  High Breakdown-Point Estimates of Regression by Means of the Minimization of an Efficient Scale , 1988 .

[21]  Z. Ying,et al.  On least-squares regression with censored data , 2006 .

[22]  Uniform Representation of Product‐Limit Integrals with Applications , 2005 .

[23]  Winfried Stute,et al.  Consistent estimation under random censorship when covariables are present , 1993 .

[24]  V. Yohai,et al.  Bias- and efficiency-robustness of general M-estimators for regression with random carriers , 1979 .

[25]  Zhiliang Ying,et al.  A Missing Information Principle and $M$-Estimators in Regression Analysis with Censored and Truncated Data , 1994 .

[26]  V. Yohai,et al.  Bias-Robust Estimates of Regression Based on Projections , 1993 .

[27]  V. Yohai HIGH BREAKDOWN-POINT AND HIGH EFFICIENCY ROBUST ESTIMATES FOR REGRESSION , 1987 .

[28]  Christine H. Müller,et al.  High Breakdown Point and High Efficiency , 1997 .