Design and optimization of navigation and guidance techniques for Mars pinpoint landing: Review and prospect

Abstract Future Mars landing missions will require the capability of precise landing at certain sites for specific scientific interests to gather more valuable scientific information. Autonomous navigation and guidance in the Mars approach, entry, descent, and landing (AEDL) phase plays an important role in fulfilling a pinpoint landing mission. This paper systematically summarizes the latest developments and current status of autonomous navigation and guidance designs for Mars landing missions. Firstly, the AEDL phase for Mars landing is analyzed, and several landmark Mars landing missions are reviewed. Based on the precision requirement, the technology challenges of autonomous navigation and guidance for Mars pinpoint landing are discussed. Then, recent developments of autonomous navigation design, which contain the navigation scheme and state estimation methods are summarized. Furthermore, the cutting-edge concept of navigation scheme optimization is also introduced, which may provide new ideas to the mission design. Next, the state-of-art guidance technologies of entry and powered descent phases are analyzed. The corresponding reachable and controllable set analysis, trajectory optimization, and advanced guidance methods are also revealed. Finally, aiming to support future Mars pinpoint landing missions, a comprehensive prospective for the development of autonomous navigation and guidance is presented.

[1]  Jiateng Long,et al.  Controllable set analysis for planetary landing under model uncertainties , 2015 .

[2]  Shinji Suzuki,et al.  Modified Genetic Algorithm for Constrained Trajectory Optimization , 2005 .

[3]  Joseph E. Riedel,et al.  Using Autonomous Navigation for Interplanetary Missions: The Validation of Deep Space 1 AutoNav , 2000 .

[4]  Pingyuan Cui,et al.  A beacon configuration optimization method based on Fisher information for Mars atmospheric entry , 2017 .

[5]  Daniel Dueri,et al.  Customized Real-Time Interior-Point Methods for Onboard Powered-Descent Guidance , 2017 .

[6]  Rui Xu,et al.  A Multi Sensor Based Integrated Navigation for Pin-Point Landing on Mars , 2015 .

[7]  C. Ashton,et al.  The Search for MH370 , 2014, Journal of Navigation.

[8]  Christopher D. Karlgaard,et al.  Mars Science Laboratory Entry, Descent, and Landing Trajectory and Atmosphere Reconstruction , 2013 .

[9]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[10]  Vasile Istratie OPTIMAL SKIP ENTRY INTO ATMOSPHERE WITH MINIMUM HEAT AND CONSTRAINTS , 2000 .

[11]  D. Pines,et al.  SPACECRAFT NAVIGATION USING X-RAY PULSARS , 2006 .

[12]  Xiuqiang Jiang,et al.  Review and prospect of guidance and control for Mars atmospheric entry , 2014 .

[13]  Frederick Serricchio,et al.  In-flight experience of the Mars Science Laboratory Guidance, Navigation, and Control system for Entry, Descent, and Landing , 2015 .

[14]  Andreas Enevold Mogensen Real-time navigation for Mars final approach using the Mars Network , 2007 .

[15]  Jarret M. Lafleur,et al.  Mars Entry Bank Profile Design for Terminal State Optimization , 2011 .

[16]  Robert D. Braun,et al.  Statistical Entry, Descent, and Landing Performance Reconstruction of the Mars Science Laboratory , 2014 .

[17]  Shengying Zhu,et al.  Observability-Based Beacon Configuration Optimization for Mars Entry Navigation , 2015 .

[18]  Stergios I. Roumeliotis,et al.  Vision-Aided Inertial Navigation for Spacecraft Entry, Descent, and Landing , 2009, IEEE Transactions on Robotics.

[19]  Adrian Sandu,et al.  A Polynomial Chaos-Based Kalman Filter Approach for Parameter Estimation of Mechanical Systems , 2010 .

[20]  Sanjay E. Talole,et al.  Sliding Mode Observer for Drag Tracking in Entry Guidance , 2007 .

[21]  Stergios I. Roumeliotis,et al.  Vision‐aided inertial navigation for pin‐point landing using observations of mapped landmarks , 2007, J. Field Robotics.

[22]  Alireza Khayatian,et al.  Attitude estimation by divided difference filter in quaternion space , 2012 .

[23]  Hutao Cui,et al.  Vision-aided inertial navigation for pinpoint planetary landing , 2007 .

[24]  Yanning Guo,et al.  Applications of Generalized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance Algorithm , 2013 .

[25]  Behcet Acikmese,et al.  Convex programming approach to powered descent guidance for mars landing , 2007 .

[26]  T. A. Ely Optimal orbits for space constellations of Mars navigation satellites , 2000 .

[27]  Ping Lu,et al.  Comparison of Numerical Predictor-Corrector and Apollo Skip Entry Guidance Algorithms , 2010 .

[28]  Hexi Baoyin,et al.  Autonomous Navigation of Mars Probes by Combining Optical Data of Viewing Martian Moons and SST Data , 2015 .

[29]  Yuanqing Xia,et al.  Active disturbance rejection control for drag tracking in mars entry guidance , 2014 .

[30]  Takashi Okajima,et al.  The Neutron star Interior Composition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timing spectroscopy , 2012, Other Conferences.

[31]  Charles D. Edwards,et al.  Mars network for enabling low-cost missions , 2003 .

[32]  Michèle Lavagna,et al.  Pso Algorithm For Planetary Atmosphere Entry Vehicles Multidisciplinary Guidance Design , 2006 .

[33]  Guangfu Ma,et al.  Collision avoidance ZEM/ZEV optimal feedback guidance for powered descent phase of landing on Mars , 2017 .

[34]  D. D. Morabito,et al.  The Spacecraft Communications Blackout Problem Encountered during Passage or Entry of Planetary Atmospheres , 2002 .

[35]  Farzin Amzajerdian,et al.  Lidar systems for precision navigation and safe landing on planetary bodies , 2011, Other Conferences.

[36]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[37]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[38]  J.A. Herath,et al.  Overview of the MEDLI Project , 2008, 2008 IEEE Aerospace Conference.

[39]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[40]  P. Lu,et al.  Optimal Aerocapture Guidance , 2015 .

[41]  Hutao Cui,et al.  A new approach based on crater detection and matching for visual navigation in planetary landing , 2014 .

[42]  Xiuqiang Jiang,et al.  RBF neural network based second-order sliding mode guidance for Mars entry under uncertainties , 2015 .

[43]  N. Vinh Optimal trajectories in atmospheric flight , 1981 .

[44]  Catherine L. Thornton,et al.  Radiometric Tracking Techniques for Deep-Space Navigation , 2003 .

[45]  Alexander I. Kozynchenko,et al.  Analysis of predictive entry guidance for a Mars lander under high model uncertainties , 2011 .

[46]  Hermann G. Matthies,et al.  A deterministic filter for non-Gaussian Bayesian estimation— Applications to dynamical system estimation with noisy measurements , 2012 .

[47]  Hutao Cui,et al.  Constrained Numerical Predictor–Corrector Guidance for Mars Precision Landing , 2017 .

[48]  David K. Geller,et al.  Apollo-derived Mars precision lander guidance , 1998 .

[49]  Yanning Guo,et al.  Waypoint-Optimized Zero-Effort-Miss/Zero-Effort-Velocity Feedback Guidance for Mars Landing , 2013 .

[50]  Raymond E. Arvidson,et al.  Mars Exploration Rover mission , 2003 .

[51]  Larry H. Matthies,et al.  Design Through Operation of an Image-Based Velocity Estimation System for Mars Landing , 2007, International Journal of Computer Vision.

[52]  R. H. Bishop,et al.  Robust entry navigation using hierarchical filter architectures regulated with gating networks , 2001 .

[53]  P. Graven,et al.  AAS 08-054 1 XNAV FOR DEEP SPACE NAVIGATION , 2008 .

[54]  Kenneth D. Mease,et al.  Trajectory Tracking and Online Replanning for Mars Entry , 2016 .

[55]  Shengying Zhu,et al.  An innovative navigation scheme of powered descent phase for Mars pinpoint landing , 2014 .

[56]  Shengying Zhu,et al.  Orbit optimization of Mars orbiters for entry navigation: From an observability point of view , 2015 .

[57]  Namhoon Cho,et al.  Three-Dimensional Nonlinear Differential Geometric Path-Following Guidance Law , 2015 .

[58]  Geethu Lisba Jacob,et al.  Mars Entry Mission Bank Profile Optimization , 2014 .

[59]  Fabrizio Pirondini,et al.  A New Approach to the Design of Navigation Constellations around MARS: The MARCO POLO Evolutionary System , 2006 .

[60]  Shengying Zhu,et al.  On the observability of Mars entry navigation using radiometric measurements , 2014 .

[61]  Robert H. Bishop,et al.  Multi-model Navigation with Gating Networks for Mars Entry Precision Landing , 2004 .

[62]  R. Manning,et al.  Mars exploration entry, descent and landing challenges , 2006, 2006 IEEE Aerospace Conference.

[63]  Todd Ely,et al.  Altair Navigation During Trans-Lunar Cruise, Lunar Orbit, Descent and Landing , 2010 .

[64]  Shengying Zhu,et al.  Real-time Navigation for Mars Final Approach Using X-ray Pulsars , 2013 .

[65]  C. A. Kluever,et al.  Entry Guidance Performance for Mars Precision Landing , 2008 .

[66]  Louis A. D'Amario,et al.  Mars exploration rovers navigation results , 2004 .

[67]  Huimin Fu,et al.  Multiple Model Adaptive Rank Estimation for Integrated Navigation During Mars Entry , 2016, Journal of Navigation.

[68]  Jason L. Speyer,et al.  Relative Navigation Between Two Spacecraft Using X-ray Pulsars , 2011, IEEE Transactions on Control Systems Technology.

[69]  Xiuqiang Jiang,et al.  High-precision Mars Entry Integrated Navigation Under Large Uncertainties , 2014 .

[70]  Marco B. Quadrelli,et al.  Guidance Navigation and Control Technology Assessment for Future Planetary Science Missions , 2013 .

[71]  Fernando Abilleira,et al.  Mars Science Laboratory Interplanetary Navigation , 2014 .

[72]  F. Amzajerdian,et al.  Doppler lidar sensor for precision landing on the Moon and Mars , 2012, 2012 IEEE Aerospace Conference.

[73]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[74]  Hermann G. Matthies,et al.  Sampling-free linear Bayesian updating of model state and parameters using a square root approach , 2013, Comput. Geosci..

[75]  Amitabh Saraf,et al.  Design and Evaluation of an Acceleration Guidance Algorithm for Entry , 2003 .

[76]  Kenneth D. Mease,et al.  Feasible Trajectory Generation for Atmospheric Entry Guidance , 2007 .

[77]  Roberto Furfaro,et al.  Mars Atmospheric Entry Guidance via Multiple Sliding Surface Guidance for Reference Trajectory Tracking , 2012 .

[78]  Chen Gang,et al.  Genetic algorithm optimization of RLV reentry trajectory , 2005 .

[79]  H. Carvalho,et al.  Optimal nonlinear filtering in GPS/INS integration , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[80]  Joel Benito Manrique Advances in spacecraft atmospheric entry guidance , 2010 .

[81]  Pingyuan Cui,et al.  Optimal landing site selection based on safety index during planetary descent , 2017 .

[82]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[83]  Charles D. Edwards,et al.  The Electra proximity link payload for Mars relay telecommunications and navigation , 2003 .

[84]  Christof Büskens,et al.  Real-Time Atmospheric Entry Trajectory Computation Using Parametric Sensitivities , 2016 .

[85]  Robert D. Braun,et al.  Rapid Entry Corridor Trajectory Optimization for Conceptual Design , 2010 .

[86]  Kyu-Hong Choi,et al.  Satellite orbit determination using a batch filter based on the unscented transformation , 2010 .

[87]  A. Rao,et al.  Performance Optimization of a Maneuvering Re-Entry Vehicle Using a Legendre Pseudospectral Method , 2002 .

[88]  Ping Lu,et al.  Comparison of Fully Numerical Predictor-Corrector and Apollo Skip Entry Guidance Algorithms , 2012 .

[89]  Shyam Bhaskaran,et al.  Mars approach navigation using Mars network based doppler tracking , 2002 .

[90]  S. Sheikh The Use Of Variable Celestial X-ray Sources For Spacecraft Navigation , 2005 .

[91]  G. Downs Interplanetary navigation using pulsating radio sources , 1974 .

[92]  S. Bharadwaj,et al.  ENTRY TRAJECTORY TRACKING LAW VIA FEEDBACK LINEARIZATION , 1998 .

[93]  J. C. Harpold,et al.  Space Shuttle entry guidance performance results , 1983 .

[94]  Shuang Li,et al.  Innovative Mars entry integrated navigation using modified multiple model adaptive estimation , 2014 .

[95]  Rajesh Arora Reentry Trajectory Optimization: Evolutionary Approach , 2002 .

[96]  Roberto Furfaro,et al.  Non-linear Sliding Guidance algorithms for precision lunar landing , 2011 .

[97]  Taishan Lou,et al.  Robust Mars Atmospheric Entry Integrated Navigation based on Parameter Sensitivity , 2015, ArXiv.

[98]  Raktim Bhattacharya,et al.  Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics , 2010 .

[99]  Yuanqing Xia,et al.  Mars atmospheric entry guidance for reference trajectory tracking , 2015 .

[100]  Juan R. Cruz,et al.  Entry, Descent, and Landing Performance of the Mars Phoenix Lander , 2008 .

[101]  Robert D. Braun The Mars Science Laboratory Entry, Descent, and Landing System , 2014 .

[102]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[103]  Eberhard Gill,et al.  Relative state estimation and observability for formation flying satellites in the presence of sensor noise , 2010 .

[104]  Robert D. Braun,et al.  Guidance, Navigation, and Control System Performance Trades for Mars Pinpoint Landing , 2010 .

[105]  Edward C. Wong,et al.  Guidance and Control Design for Hazard Avoidance and Safe Landing on Mars , 2006 .

[106]  Yuanqing Xia,et al.  Improved ZEM/ZEV feedback guidance for Mars powered descent phase , 2014 .

[107]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[108]  Robert H. Bishop,et al.  MARS ENTRY NAVIGATION FROM EKF PROCESSING OF BEACON DATA , 2000 .

[109]  Yuanqing Xia,et al.  Mars Entry Navigation With Uncertain Parameters Based on Desensitized Extended Kalman Filter , 2015, IEEE Transactions on Industrial Informatics.

[110]  Donn B. Kirk,et al.  Aerodynamic Behavior of the Viking Entry Vehicle: Ground Test and Flight Results , 1978 .

[111]  Jean Francois Levesque,et al.  Innovative Navigation Schemes for State and Parameter Estimation During Mars Entry , 2007 .

[112]  E. Glenn Lightsey,et al.  Expected EDL navigation performance with spacecraft to spacecraft radiometric data , 2005 .

[113]  Gavin Mendeck,et al.  Guidance Design for Mars Smart Landers Using the Entry Terminal Point Controller , 2002 .

[114]  Ping Lu,et al.  Entry Guidance: A Unified Method , 2014 .

[115]  Fu Huimin,et al.  RANK FILTER METHOD , 2014 .

[116]  Liu Zhang,et al.  MCAV/IMU integrated navigation for the powered descent phase of Mars EDL , 2010 .

[117]  E. Glenn Lightsey,et al.  Real-Time Navigation for Mars Missions Using the Mars Network , 2008 .

[118]  Pingyuan Cui,et al.  A polynomial chaos based square-root Kalman filter for Mars entry navigation , 2016 .

[119]  Darren Baird,et al.  Mars Exploration Rover Cruise Orbit Determination , 2004 .

[120]  A.E. Johnson,et al.  Overview of Terrain Relative Navigation Approaches for Precise Lunar Landing , 2008, 2008 IEEE Aerospace Conference.

[121]  S. Ploen,et al.  A Powered Descent Guidance Algorithm for Mars Pinpoint Landing , 2005 .

[122]  Marvin K. Simon,et al.  Autonomous Software-Defined Radio Receivers for Deep Space Applications , 2006 .

[123]  Prasun N. Desai,et al.  Mars exploration rovers entry, descent, and landing trajectory analysis , 2004 .

[124]  Renato Zanetti Advanced navigation algorithms for precision landing , 2007 .

[125]  Pingyuan Cui,et al.  X-ray pulsars/Doppler integrated navigation for Mars final approach , 2016 .

[126]  Keith C. Gendreau,et al.  X-ray pulsar navigation algorithms and testbed for SEXTANT , 2015, 2015 IEEE Aerospace Conference.

[127]  Benjamin L. Pence,et al.  A maximum likelihood approach to recursive polynomial chaos parameter estimation , 2010, Proceedings of the 2010 American Control Conference.

[128]  Colin R. McInnes Gravity Turn Descent with Quadratic Air Drag , 1997 .

[129]  Brian D. Pollard,et al.  A Radar Terminal Descent Sensor for the Mars Science Laboratory mission , 2009, 2009 IEEE Aerospace conference.

[130]  Nesrin Sarigul-Klijn,et al.  Survey of planetary entry guidance algorithms , 2014 .

[131]  D. J. Bell,et al.  Mars network: a Mars orbiting communications and navigation satellite constellation , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[132]  Michael J. Grant,et al.  Mars Science Laboratory Entry Optimization Using Particle Swarm Methodology , 2007 .

[133]  Behrouz Ebrahimi,et al.  Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers , 2008 .

[134]  Edward C. Wong,et al.  Autonomous guidance and control design for hazard avoidance aand safe landing on Mars , 2002 .

[135]  Andrew E. Johnson,et al.  Analysis and Testing of a LIDAR-Based Approach to Terrain Relative Navigation for Precise Lunar Landing , 2011 .

[136]  A. Vasavada,et al.  Reconstruction of Atmospheric Properties from Mars Science Laboratory Entry, Descent, and Landing , 2014 .

[137]  Jarret M. Lafleur Trading Robustness Requirements in Mars Entry Trajectory Design , 2009 .

[138]  Gavin F. Mendeck,et al.  Entry Guidance Design and Postflight Performance for 2011 Mars Science Laboratory Mission , 2014 .

[139]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[140]  Martin Cornelius Heyne Spacecraft precision entry navigation using an adaptive sigma point Kalman filter bank , 2007 .

[141]  G. Evensen Sampling strategies and square root analysis schemes for the EnKF , 2004 .

[142]  Farzin Amzajerdian,et al.  LIDAR-Aided Inertial Navigation with Extended Kalman Filtering for Pinpoint Landing , 2009 .

[143]  R. V. Jategaonkar,et al.  Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter , 2006 .

[144]  S. Butman,et al.  Navigation Using X-Ray Pulsars , 1981 .

[145]  Behçet Açikmese,et al.  Constrained Reachability and Controllability Sets for Planetary Precision Landing via Convex Optimization , 2015 .

[146]  Shuang Li,et al.  Mars entry trajectory optimization using DOC and DCNLP , 2011 .

[147]  B. Jai,et al.  The Mars reconnaissance orbiter mission , 2005, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[148]  K. Lau,et al.  AN INNOVATIVE DEEP SPACE APPLICATION OF GPS TECHNOLOGY FOR FORMATION FLYING SPACECRAFT , 1996 .

[149]  Kuang-Yang Tu,et al.  Drag-based predictive tracking guidance for Mars precision landing , 1998 .

[150]  Kuang-Yang Tu,et al.  Drag-Based Predictive Tracking Guidance for Mars Precision Landing , 1998 .

[151]  Christopher N. D'Souza,et al.  AN OPTIMAL GUIDANCE LAW FOR PLANETARY LANDING , 1997 .

[152]  O. Romberg,et al.  Mars and Moon exploration passing through the European Precision Landing GNC Test Facility , 2008 .

[153]  Hutao Cui,et al.  Mars Atmospheric Entry Guidance Using a Sensitivity Method , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[154]  Colin R. McInnes DIRECT ADAPTIVE CONTROL FOR GRAVITY-TURN DESCENT , 1999 .

[155]  Pingyuan Cui,et al.  A Novel Trajectory Optimization Method for Mars Atmospheric Entry , 2015 .

[156]  Pingyuan Cui,et al.  An Observability-Based Trajectory Optimization Considering Disturbance for Atmospheric Entry , 2016 .

[157]  Ping Lu,et al.  Regulation About Time-Varying Trajectories: Precision Entry Guidance Illustrated , 1999 .

[158]  T. Singh,et al.  Efficient particle filtering for road-constrained target tracking , 2005 .

[159]  Joel Benito,et al.  Reachable and Controllable Sets for Planetary Entry and Landing , 2010 .