In silico mining of microsatellites and analysis of genetic diversity among inter‐ and intra‐generic aphids of the subfamily Aphidinae

Nearly 5 000 aphid species damage crops, either by sucking plant sap or as disease‐transmitting vectors. Microsatellites are used for understanding molecular diversity and eco‐geographical relationships among aphid species. Expressed sequence tag (EST)‐microsatellite motifs were identified through an in silico approach using inbuilt simple sequence repeat mining tools in aphid EST dataset. Microsatellite mining revealed one in every five aphid genes as containing a repeat motif, and out of 9 290 EST microsatellites mined from Aphis gossypii Glover and Acyrthosiphon pisum (Harris) (both Hemiptera: Aphididae), 80% were of A and/or T (AT, ATA, AAT, AATA, and ATTT) motifs, and the rest contained G and/or C motifs. All microsatellite sequences were annotated using BLAST. Primers for EST microsatellites were designed using the Primer 3.0 tool. 106 primer pairs of both dinucleotide repeats (DNRs) and trinucleotide repeats (TNRs), representing open reading frames (ORFs) and untranslated regions (UTRs), were synthesized to amplify 15 aphid species belonging to the subfamily Aphidinae, collected from diverse hosts. Four hundred forty‐five polymorphic alleles were amplified. Fifty TNR and 23 DNR microsatellites amplified across the species studied. Polymorphism information content values of microsatellites ranged from 0.23 to 0.91, amplifying 2–16 alleles. Genetic similarity indices were estimated using the ‘NTSYS‐pc’ software package. Unweighted pair group with arithmetic mean and principal component analysis resolved taxonomic relationships of the aphid species studied. The new aphid microsatellites developed will provide valuable information to researchers to study Indian aphid species diversity and genetic relationships.

[1]  P. Sunnucks,et al.  Evolutionary and genetic aspects of aphid biology: A review , 2013 .

[2]  O. Paulo,et al.  Isolation and characterization of fifteen polymorphic microsatellite loci for the citrus mealybug, Planococcus citri (Hemiptera: Pseudococcidae), and cross-amplification in two other mealybug species , 2014, Journal of Genetics.

[3]  Rebhi Lamia,et al.  Association of four apolipoprotein B polymorphisms with lipid profile and stenosis in Tunisian coronary patients , 2012, Journal of Genetics.

[4]  A. Michel,et al.  Development of soybean aphid genomic SSR markers using next generation sequencing. , 2011, Genome.

[5]  A. Michel,et al.  Population Genetic Structure of Aphis glycines , 2009, Environmental entomology.

[6]  Qi Li,et al.  Development of EST-SSRs in the Mediterranean blue mussel, Mytilus galloproviancialis , 2007 .

[7]  J. Rudd,et al.  Cross‐species transferability of microsatellite markers from six aphid (Hemiptera: Aphididae) species and their use for evaluating biotypic diversity in two cereal aphids , 2007, Insect molecular biology.

[8]  J. Nagaraju,et al.  Microsatellite flanking region similarities among different loci within insect species , 2007, Insect molecular biology.

[9]  E. Jousselin,et al.  Phylogeny of the genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. , 2007, Molecular phylogenetics and evolution.

[10]  A. Grover,et al.  Biased distribution of microsatellite motifs in the rice genome , 2007, Molecular Genetics and Genomics.

[11]  C. Feuillet,et al.  High transferability of bread wheat EST-derived SSRs to other cereals , 2005, Theoretical and Applied Genetics.

[12]  Andreas Graner,et al.  Genic microsatellite markers in plants: features and applications. , 2005, Trends in biotechnology.

[13]  M. Caillaud,et al.  Microsatellite DNA markers for the pea aphid Acyrthosiphon pisum , 2004 .

[14]  A. Estoup,et al.  Cross-species amplification of microsatellite loci in aphids: assessment and application , 2004 .

[15]  G. May,et al.  Medicago truncatula EST-SSRs reveal cross-species genetic markers for Medicago spp. , 2004, Theoretical and Applied Genetics.

[16]  G. Kochert,et al.  Phylogenetic distribution and genetic mapping of a (GGC)n microsatellite from rice (Oryza sativa L.) , 1993, Plant Molecular Biology.

[17]  B. Sabater-Muñoz,et al.  Host–based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  A. Wilson,et al.  Heritable genetic variation and potential for adaptive evolution in asexual aphids (Aphidoidea) , 2003 .

[19]  F. Delmotte,et al.  Predominance of sexual reproduction in Romanian populations of the aphid Sitobion avenae inferred from phenotypic and genetic structure , 2003, Heredity.

[20]  P. Sunnucks,et al.  Migration and genetic structure of the grain aphid (Sitobion avenae) in Britain related to climate and clonal fluctuation as revealed using microsatellites , 2002, Molecular ecology.

[21]  L. Singh,et al.  Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions , 2003, Genome Biology.

[22]  W. Weisser,et al.  Metapopulation structure of the specialized herbivore Macrosiphoniella tanacetaria (Homoptera, Aphididae) , 2002, Molecular ecology.

[23]  J. Gauthier,et al.  Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers , 2002, Molecular ecology.

[24]  A. Wilson,et al.  Microsatellite variation in cyclically parthenogenetic populations of Myzus persicae in south-eastern Australia , 2002, Heredity.

[25]  G. Charmet,et al.  Transferability of wheat microsatellites to diploid Triticeae species carrying the A, B and D genomes , 2001, Theoretical and Applied Genetics.

[26]  M. A. Sloane,et al.  Microsatellite isolation, linkage group identification and determination of recombination frequency in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). , 2001, Genetical research.

[27]  D. Struss,et al.  Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassicaceae species , 2001, Theoretical and Applied Genetics.

[28]  P. Sunnucks,et al.  Efficient genetic markers for population biology. , 2000, Trends in ecology & evolution.

[29]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[30]  A. Wilson,et al.  Microevolution, low clonal diversity and genetic affinities of parthenogenetic Sitobion aphids in New Zealand , 1999, Molecular ecology.

[31]  H. Niemeyer,et al.  Molecular markers to differentiate two morphologically‐close species of the genus Sitobion , 1999 .

[32]  A. Latorre,et al.  Molecular markers linked to breeding system differences in segregating and natural populations of the cereal aphid Rhopalosiphum padi L. , 1999, Molecular ecology.

[33]  N. Moran,et al.  How nutritionally imbalanced is phloem sap for aphids? , 1999 .

[34]  S. Fuller,et al.  Characterization of microsatellite loci in the aphid species Aphis gossypii Glover , 1999, Molecular ecology.

[35]  P. Hebert,et al.  Reproductive mode and population genetic structure of the cereal aphid Sitobion avenae studied using phenotypic and microsatellite markers , 1999, Molecular ecology.

[36]  P. Sunnucks,et al.  Genetic structure of an aphid studied using microsatellites: cyclic parthenogenesis, differentiated lineages and host specialization , 1997, Molecular ecology.

[37]  P. Sunnucks,et al.  RANDOM LOSS OF X CHROMOSOME AT MALE DETERMINATION IN AN APHID, SITOBION NEAR FRAGARIAE, DETECTED USING AN X-LINKED POLYMORPHIC MICROSATELLITE MARKER , 1997 .

[38]  P. England,et al.  Microsatellite and chromosome evolution of parthenogenetic sitobion aphids in Australia. , 1996, Genetics.

[39]  N. Maclean,et al.  Spatial and temporal genetic variation in British field populations of the grain aphid Sitobion avenae (F.) (Hemiptera: Aphididae) studied using rapd-pcr , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[40]  D. Goldstein,et al.  Microsatellite variation in North American populations of Drosophila melanogaster. , 1995, Nucleic acids research.

[41]  A. Fereres,et al.  Identification of Aphid (Homoptera: Aphididae) Species and Clones by Random Amplified Polymorphic DNA , 1993 .

[42]  D. Queller,et al.  Detection of highly polymorphic microsatellite loci in a species with little allozyme polymorphism , 1993, Molecular ecology.

[43]  R. Foottit,et al.  THE RELATIVE IMPORTANCE OF SHORT‐ AND LONG‐RANGE MOVEMENT OF FLYING APHIDS , 1993 .

[44]  G. Churchill,et al.  Optimizing parental selection for genetic linkage maps. , 1993, Genome.

[45]  N. Duteau,et al.  Use of the random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) to detect DNA polymorphisms in aphids (Homoptera: Aphididae) , 1992 .

[46]  M. J. Chacko,et al.  Aphids: Their Biology, Natural Enemies and Control , 1991 .

[47]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.