stichting mathematisch centrum
暂无分享,去创建一个
[1] Mieczyslaw Wojtas,et al. On seven mutually orthogonal Latin squares , 1977, Discret. Math..
[2] R. C. Bose,et al. Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture , 1960, Canadian Journal of Mathematics.
[3] Andries E. Brouwer. A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares , 1980, Eur. J. Comb..
[4] Joseph Douglas Horton. Sub-Latin Squares and Incomplete Orthogonal Arrays , 1974, J. Comb. Theory, Ser. A.
[5] K. A. Bush. A Generalization of a Theorem due to MacNeish , 1952 .
[6] Andries E. Brouwer,et al. On the existence of 30 mutually orthogonal latin squares , 1980 .
[7] Douglas R. Stinson,et al. Some Results on the Existence of Squares , 1980 .
[8] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[9] Krzysztof Szajowski. The number of orthogonal Latin squares , 1976 .
[10] Haim Hanani,et al. On the number of orthogonal latin squares , 1970 .
[11] Mieczyslaw Wojtas,et al. New Wilson-type constructions of mutually orthogonal latin squares , 1980, Discret. Math..
[12] R. C. Bose,et al. On the construction of sets of mutually orthogonal Latin squares and the falsity of a conjecture of Euler , 1960 .
[13] Paul Erdös,et al. On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.