Hamiltonian graphs involving distances

Let G be a graph of order n. We show that if G is a 2-connected graph and max{d(u), d(v)} + |N(u) U N(v)| ≥ n for each pair of vertices u, v at distance two, then either G is hamiltonian or G 3Kn/3 U T1 U T2, where n O (mod 3), and T1 and T2 are the edge sets of two vertex disjoint triangles containing exactly one vertex from each Kn/3. This result generalizes both Fan's and Lindquester's results as well as several others.