Nonlocality as well as rejection of realism are only sufficient (but non-necessary!) conditions for violation of Bell's inequality

In this review we remind the viewpoint that violation of Bell's inequality might be interpreted not only as an evidence of the alternative - either nonlocality or "death of reality" (under the assumption the quantum mechanics is incomplete). Violation of Bell's type inequalities is a well known sufficient condition of probabilistic incompatibility of random variables - impossibility to realize them on a single probability space. Thus, in fact, we should take into account an additional interpretation of violation of Bell's inequality - a few pairs of random variables (two-dimensional vector variables) involved in the EPR-Bohm experiment are incompatible. They could not be realized on a single Kolmogorov probability space. Thus, one can choose between: (a) completeness of quantum mechanics; (b) nonlocality; (c) " death of reality"; (d) non-Kolmogorovness. In any event, violation of Bell's inequality has a variety of possible interpretations. Hence, it could not be used to obtain the definite conclusion on the relation between quantum and classical models.

[1]  A. Peres Unperformed experiments have no results , 1978 .

[2]  Philippe H. Eberhard Constraints of determinism and of Bell's inequalities are not equivalent , 1982 .

[3]  P. H. Eberhard,et al.  Bell’s theorem and the different concepts of locality , 1978 .

[4]  M. Kupczyński,et al.  Pitovsky model and complementarity , 1987 .

[5]  A. Yu. Khrennikov,et al.  p‐adic quantum mechanics with p‐adic valued functions , 1991 .

[6]  Peter Rastall,et al.  The bell inequalities , 1983 .

[7]  V. I. Man'ko,et al.  Tomography of Spin States, the Entanglement Criterion, and Bell's Inequalities , 2006 .

[8]  Jean-Pierre Vigier,et al.  A review of extended probabilities , 1986 .

[9]  E. Wigner On Hidden Variables and Quantum Mechanical Probabilities , 1970 .

[10]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[11]  Luigi Accardi,et al.  The Probabilistic Roots of the Quantum Mechanical Paradoxes , 1984 .

[12]  W. De Baere On the significance of Bell's inequality for hidden-variable theories , 1984 .

[13]  M. Kupczyński,et al.  Bertrand's paradox and Bell's inequalities , 1987 .

[14]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[15]  A. F. Kracklauer What's Wrong with this Rebuttal? , 2006 .

[16]  Andrew Khrennikov,et al.  p-adic probability interpretation of Bell's inequality , 1995 .

[17]  P. H. Eberhard,et al.  Bell's theorem without hidden variables , 1977 .

[18]  Igor Volovich,et al.  QUANTUM CRYPTOGRAPHY IN SPACE AND BELL'S THEOREM , 2001 .

[19]  M. Kupczyński,et al.  On some new tests of completeness of quantum mechanics , 1986 .

[20]  Jagdish Mehra,et al.  The Interpretation of Quantum Mechanics , 2001 .

[21]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[22]  P. Dirac Principles of Quantum Mechanics , 1982 .

[23]  Itamar Pitowsky,et al.  From George Boole To John Bell — The Origins of Bell’s Inequality , 1989 .

[24]  Andrei Khrennikov,et al.  Local realistic representation for correlations in the original EPR-model for position and momentum , 2006, Soft Comput..

[25]  Andrei Khrennikov Nonlinear Schrödinger equations from prequantum classical statistical field theory , 2006 .

[26]  Jan-Åke Larsson,et al.  Quantum Paradoxes, Probability Theory, and Change of Ensemble , 2000 .

[27]  Andrew Khrennikov,et al.  Statistical interpretation of p‐adic quantum theories with p‐adic valued wave functions , 1995 .

[28]  V. I. Man'ko,et al.  A Charged Particle in an Electric Field in the Probability Representation of Quantum Mechanics , 2001 .

[29]  Gregor Weihs,et al.  A Test of Bell’s Inequality with Spacelike Separation , 2007 .

[30]  Andrei Khrennikov,et al.  A pre-quantum classical statistical model with infinite-dimensional phase space , 2005, quant-ph/0505228.

[31]  N. Gisin,et al.  A local hidden variable model of quantum correlation exploiting the detection loophole , 1999 .

[32]  Claudio Garola,et al.  Semantic realism versus EPR-Like paradoxes: The Furry, Bohm-Aharonov, and Bell paradoxes , 1996 .

[33]  A. Kolmogoroff Grundbegriffe der Wahrscheinlichkeitsrechnung , 1933 .

[34]  W. M. de Muynck,et al.  Interpretations of quantum mechanics, joint measurement of incompatible observables, and counterfactual definiteness , 1994 .

[35]  Vladimir I. Man’ko,et al.  The classification of two-particle spin states and generalized Bell inequalities , 2001 .

[36]  J. Bell,et al.  Speakable and Unspeakable in Quatum Mechanics , 1988 .

[37]  I. Pitowsky Range Theorems for Quantum Probability and Entanglement , 2001 .

[38]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[39]  Guillaume Adenier,et al.  Is the fair sampling assumption supported by EPR experiments , 2007 .

[40]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[41]  D. N. Klyshko,et al.  A modified N-particle Bell theorem, the corresponding optical experiment and its classical model , 1993 .

[42]  M. Rouff,et al.  Sound Attenuation Measurements in SuperfluidHe3-AWell belowTc: AN Anomalous Behavior at Low Pressure. , 1982 .

[43]  B. D'espagnat Veiled Reality: An Analysis Of Present-day Quantum Mechanical Concepts , 1995 .

[44]  Karl Hess,et al.  Bell’s theorem: Critique of proofs with and without inequalities , 2005 .

[45]  D. N. Klyshko,et al.  ON THE REALIZATION AND INTERPRETATION OF QUANTUM TELEPORTATION , 1998 .

[46]  Andrei Khrennikov Non-Kolmogorov probability models and modified Bell's inequality , 2000 .

[47]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[48]  Sae Woo Nam,et al.  Low-temperature optical photon detectors for quantum information applications , 2004 .

[49]  V. A. Andreev,et al.  Two-particle spin states and generalized Bell’s inequalities , 2000 .

[50]  Andrew Khrennikov,et al.  p-adic probability distributions of hidden variables , 1995 .

[51]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[52]  Andrei Khrennikov,et al.  Generalizations of Quantum Mechanics Induced by Classical Statistical Field Theory , 2005 .

[53]  V. I. Man'ko,et al.  Bell's Inequality for Two-Particle Mixed Spin States , 2004 .

[54]  Andrei Khrennikov,et al.  Frequency Analysis of the EPR-Bell Argumentation , 2002 .

[55]  A. T. Bharucha-Reid,et al.  The Theory of Probability. , 1963 .

[56]  V. A. Andreev Reduction of the two-spin state density matrix and evaluation of the left-hand side of the Bell-CHSH inequality , 2006 .

[57]  V. I. Man'ko,et al.  Classical Mechanics Is not the ħ, → 0 Limit of Quantum Mechanics , 2004 .

[58]  Claudio Garola,et al.  A Simple Model for an Objective Interpretation of Quantum Mechanics , 2002 .

[59]  D. N. Klyshko,et al.  Quantum Optics , 1995 .

[60]  Igor V. Volovich Towards Quantum Information Theory in Space and Time , 2002 .

[61]  Emilio Santos Bell's theorem and the experiments: Increasing empirical support for local realism? , 2004 .

[62]  Henry P. Stapp,et al.  S-MATRIX INTERPRETATION OF QUANTUM THEORY. , 1971 .

[63]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[64]  Andrei Khrennikov,et al.  Anomalies in EPR‐Bell Experiments , 2006 .

[65]  Alfred Landé,et al.  New Foundations of Quantum Mechanics , 1966 .

[66]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[67]  Claudio Garola,et al.  The theoretical apparatus of semantic realism: A new language for classical and quantum physics , 1996 .

[68]  D. N. Klyshko,et al.  The Bell and GHZ theorems: a possible three-photon interference experiment and the question of nonlocality , 1993 .

[69]  N. N. Vorob’ev Consistent Families of Measures and Their Extensions , 1962 .

[70]  D. N. Klyshko,et al.  The Bell theorem and the problem of moments , 1996 .

[71]  Anthony J Leggett,et al.  Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem , 2006 .

[72]  Itamar Pitowsky,et al.  Deterministic model of spin and statistics , 1983 .

[73]  W. M. de Muynck,et al.  On the Significance of the Bell Inequalities for the Locality Problem in Different Realistic Interpretations of Quantum Mechanics , 1988 .

[74]  V. I. Man'ko,et al.  Classical formulation of quantum mechanics , 1996 .

[75]  Andrei Khrennikov EPR-Bohm Experiment and Interference of Probabilities , 2004 .

[76]  Andrew Khrennikov,et al.  p-Adic stochastics and Dirac quantization with negative probabilities , 1995 .

[77]  Andrei Khrennikov,et al.  A perturbation of CHSH inequality induced by fluctuations of ensemble distributions , 2000 .

[78]  T. Paterek,et al.  An experimental test of non-local realism , 2007, Nature.

[79]  Abner Shimony,et al.  Search For A Naturalistic World View , 1993 .

[80]  E. Diamanti,et al.  High-efficiency photon-number detection for quantum information processing , 2003, quant-ph/0308054.

[81]  Emilio Santos Microscopic and macroscopic Bell inequalities , 1984 .

[82]  Andrei Khrennikov,et al.  Interpretations of Probability , 1999 .

[83]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[84]  Vladimir I. Man’ko,et al.  A probabilistic operator symbol framework for quantum information , 2006 .