New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

The Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in February 2020 to monitor air quality (AQ) at an unprecedented spatial and temporal resolution from a geostationary Earth orbit (GEO) for the first time. With the development of UV–visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO, and aerosols) can be obtained. To date, all the UV–visible satellite missions monitoring air quality have been in low Earth orbit (LEO), allowing one to two observations per day. With UV–visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be on board the Geostationary Korea Multi-Purpose Satellite 2 (GEO-KOMPSAT-2) satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager 2 (GOCI-2). These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) and ESA’s Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).

Alexis K.H. Lau | Glen Jaross | Jihyo Chong | Pepijn Veefkind | Yugo Kanaya | Jay R. Herman | Myoung-Hwan Ahn | Sachiko Hayashida | Jung-Hun Woo | David P. Edwards | Sujung Go | Sang Seo Park | Ukkyo Jeong | Seon Ki Park | Berit Ahlers | Thomas P. Kurosu | Pawan K. Bhartia | Kelly Chance | Gregory R. Carmichael | Hyunkee Hong | Dai Ho Ko | Hana Lee | Robert J. Swap | Myungje Choi | Pieternel F. Levelt | Yasko Kasai | Ben Veihelmann | Jongmin Yoon | Marcel Dobber | Michael J. Newchurch | Mijin Kim | Hyeong-Ahn Kwon | J. A. Al-Saadi | Omar Torres | D. K. Nicks | James H. Crawford | Hitoshi Irie | Hanlim Lee | Myeong-Jae Jeong | B. L. Lefer | Heesung Chong | Cheng Liu | J. H. Kim | Xiong Liu | Sang Woo Kim | Juseon Bak | Ja Ho Koo | Jung-Moon Yoo | Junsung Park | Rokjin J. Park | Seunghoon Lee | P. Levelt | Xiong Liu | K. Chance | G. Carmichael | A. Lau | M. Newchurch | P. Bhartia | J. Herman | C. T. McElroy | D. Edwards | O. Torres | Jintai Lin | Sang-Woo Kim | Y. Kasai | R. Park | B. Veihelmann | P. Veefkind | J. Al-Saadi | Y. J. Kim | G. Jaross | Kwonho Lee | Jhoon Kim | C. Song | M. Jeong | Mijin Kim | Yunsoo Choi | J. Crawford | R. Swap | Jung-Moon Yoo | T. Kurosu | J. Woo | S. Hayashida | S. Park | Yong-Sang Choi | M. Kang | M. Dobber | B. Lefer | H. Irie | J. Al-Saadi | Y. Kanaya | G. G. Abad | C. Miller | Hanlim Lee | Myungje Choi | Sang-Kyun Kim | B. Ahlers | A. Cho | Si‐Wan Kim | M. Ahn | D. Nicks | U. Jeong | David Haffner | Gonzalo González Abad | Kyunghwa Lee | K. Han | Ebony Lee | H. Kwon | D. Haffner | J. Kim | K. M. Han | J. H. Kim | K. Baek | H. Hong | Kyung-Jung Moon | C. Thomas McElroy | Chul H. Song | Jhoon Kim | Yong-Sang Choi | Kwon-Ho Lee | Kwang-Mog Lee | Chang-Keun Song | Sang Woo Kim | Young-Joon Kim | Si-Wan Kim | Christopher Chan Miller | Won Jun Choi | Ara Cho | Sang-Kyun Kim | Kyunghwa Lee | Seoyoung Lee | Mina Kang | Mijin Eo | Kanghyun Baek | Jiwon Yang | Bo-Ram Kim | Hee-Woo Shin | Haklim Choi | Ebony Lee | Yesol Cha | Jintai Lin | Yunsoo Choi | J. Bak | H. Chong | Seoyoung Lee | Ja-Ho Koo | H. Shin | D. Haffner | K. Moon | J. Chong | W. Choi | S. Go | Kwang-Mog Lee | Junsung Park | Young‐joon Kim | Sang-Seo Park | W. Choi | D. Ko | Mijin Eo | J. Yoon | Haklim Choi | Chang‐Keun Song | Christopher E. Chan Miller | Seunghoon Lee | Hana Lee | Jiwon Yang | Bo-Ram Kim | Y. Cha | Cheng Liu | Seung Hoon Lee | Hee-Woo Shin

[1]  Ellsworth J. Welton,et al.  Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.

[2]  M. Razinger,et al.  Aerosol analysis and forecast in the European Centre for Medium‐Range Weather Forecasts Integrated Forecast System: 2. Data assimilation , 2009 .

[3]  Greet Janssens-Maenhout,et al.  Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2 , 2013 .

[4]  김석환,et al.  Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II) , 2010 .

[5]  Matthew L. Thomas,et al.  Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015 , 2017, The Lancet.

[6]  Michael Eisinger,et al.  The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview , 2015 .

[7]  Jassim A. Al-Saadi,et al.  The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles , 2018, Front. Environ. Sci..

[8]  G. Labow,et al.  An assessment of the world ground-based total ozone network performance from the comparison with satellite data , 1999 .

[9]  David G. Streets,et al.  A space‐based, high‐resolution view of notable changes in urban NOx pollution around the world (2005–2014) , 2016 .

[10]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .

[11]  Jeffrey L. Anderson,et al.  Assimilation of satellite NO 2 observations at high spatial resolution using OSSEs , 2017 .

[12]  Thomas F. Eck,et al.  Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS) , 2016 .

[13]  D. Jacob,et al.  Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. , 2012, Atmospheric chemistry and physics.

[14]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[15]  Toshihiko Takemura,et al.  Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud–East Asia Regional Experiment campaign , 2007 .

[16]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[17]  S. Freitas,et al.  Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts , 2010 .

[18]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[19]  M. Zupanski,et al.  Ensemble data assimilation of total column ozone using a coupled meteorology–chemistry model and its impact on the structure of Typhoon Nabi (2005) , 2015 .

[20]  Jassim A. Al-Saadi,et al.  REMOTE SENSING OF TROPOSPHERIC POLLUTION FROM SPACE , 2008 .

[21]  A. S. Kiran Kumar,et al.  Impact of the assimilation of INSAT‐3D radiances on short‐range weather forecasts , 2016 .

[22]  J. Burrows,et al.  Description of a formaldehyde retrieval algorithm for the Geostationary Environment Monitoring Spectrometer (GEMS) , 2019, Atmospheric Measurement Techniques.

[23]  Wenhan Qin,et al.  Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms , 2016 .

[24]  Ji-Hyung Hong,et al.  Korean National Emissions Inventory System and 2007 Air Pollutant Emissions , 2011 .

[25]  Jaehwa Lee,et al.  Simultaneous retrieval of aerosol properties and clear-sky direct radiative effect over the global ocean from MODIS , 2014 .

[26]  G. Carmichael,et al.  MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP , 2017 .

[27]  J. Brion,et al.  Ozone UV spectroscopy I: Absorption cross-sections at room temperature , 1992 .

[28]  Nobuo Sugimoto,et al.  The Asian Dust and Aerosol Lidar Observation Network (AD-Net) , 2016 .

[29]  Matthieu Plu,et al.  A regional air quality forecasting system over Europe : the MACC-II daily ensemble production , 2015 .

[30]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[31]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[32]  G. Brasseur,et al.  Air Pollution in Eastern Asia: An Integrated Perspective , 2017 .

[33]  Jhoon Kim,et al.  AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and Merged Products , 2018, Remote. Sens..

[34]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[35]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[36]  Glyoxal retrieval from the Ozone Monitoring Instrument , 2014 .

[37]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[38]  Po-Hsiung Lin,et al.  Estimating ground-level PM 2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument , 2015 .

[39]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[40]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[41]  Yafang Cheng,et al.  Assimilation of next generation geostationary aerosol optical depth retrievals to improve air quality simulations , 2014 .

[42]  Nobuo Sugimoto,et al.  Evolution of a lidar network for tropospheric aerosol detection in East Asia , 2016 .

[43]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[44]  W. Menzel,et al.  Introducing GOES-I: The First of a New Generation of Geostationary Operational Environmental Satellites , 1994 .

[45]  N. Krotkov,et al.  The TROPOMI surface UV algorithm , 2017 .

[46]  B. Mijling,et al.  Atmospheric Chemistry and Physics Regional Nitrogen Oxides Emission Trends in East Asia Observed from Space , 2022 .

[47]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[48]  Monitoring Aerosol Properties in East Asia from Geostationary Orbit: GOCI, MI and GEMS , 2017 .

[49]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[50]  F. Keutsch,et al.  Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry , 2012 .

[51]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[52]  R. Martin,et al.  Stratosphere–troposphere separation of nitrogen dioxide columns from the TEMPO geostationary satellite instrument , 2018, Atmospheric Measurement Techniques.

[53]  Jong-Kuk Choi,et al.  GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity , 2012 .

[54]  Paul Ingmann,et al.  Requirements for the GMES Atmosphere Service and ESA's implementation concept: Sentinels-4/-5 and -5p , 2012 .

[55]  Piet Stammes,et al.  Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation , 2008 .

[56]  M. Garay,et al.  Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign , 2019, Atmospheric Measurement Techniques.

[57]  Denis Tremblay,et al.  Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality , 2013 .

[58]  Jhoon Kim,et al.  Optimal Estimation-Based Algorithm to Retrieve Aerosol Optical Properties for GEMS Measurements over Asia , 2018, Remote. Sens..

[59]  H. Bovensmann,et al.  The geostationary scanning imaging absorption spectrometer (GeoSCIA) as part of the geostationary tropospheric pollution explorer (GeoTROPE) mission: requirements, concepts and capabilities , 2002 .

[60]  Xiong Liu,et al.  Ozone profile retrievals from the Ozone Monitoring Instrument , 2009 .

[61]  Henk Eskes,et al.  Intercomparison of SCIAMACHY and OMI Tropospheric NO2 Columns: Observing the Diurnal Evolution of Chemistry and Emissions from Space , 2008 .

[62]  O. Hasekamp,et al.  Effects of clouds on ozone profile retrievals from satellite measurements in the ultraviolet , 2008 .

[63]  Richard D. McPeters,et al.  OMI total column ozone: extending the long-term data record , 2015 .

[64]  Xiong Liu,et al.  Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval , 2015 .

[65]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[66]  D. Jacob,et al.  Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns , 2014 .

[67]  Sang Seo Park,et al.  Utilization of O4 slant column density to derive aerosol layer height from a spaceborne UV-Visible hyperspectral sensor: Sensitivity and case study. , 2015, Atmospheric chemistry and physics.

[68]  Meng Gao,et al.  Diurnal variation of aerosol optical depth and PM2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and the WRF-Chem model , 2018, Atmospheric Chemistry and Physics.

[69]  Thomas F. Eck,et al.  New approach to monitor transboundary particulate pollution over Northeast Asia , 2013 .

[70]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[71]  Seon Ki Park,et al.  Structure of forecast error covariance in coupled atmosphere–chemistry data assimilation , 2015 .

[72]  Pieternel F. Levelt,et al.  Improvements to the OMI O 2 –O 2 operational cloud algorithm and comparisons with ground-based radar–lidar observations , 2016 .

[73]  Michael J. Garay,et al.  Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA , 2018, Journal of Applied Remote Sensing.

[74]  Young Sung Ghim,et al.  GIST-PM-Asia v1: development of a numerical system to improve particulate matter forecasts in South Korea using geostationary satellite-retrieved aerosol optical data over Northeast Asia , 2015 .

[75]  Zhengqiang Li,et al.  GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia , 2018 .

[76]  T. Viard,et al.  The FCI on board MTG : optical design and performances , 2017, International Conference on Space Optics.

[77]  Arlin J. Krueger,et al.  The Solar Backscatter Ultraviolet and Total Ozone Mapping Spectrometer (SBUV/TOMS) for NIMBUS G , 1975 .

[78]  Zhengqiang Li,et al.  Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun-Sky Radiometer Observation Network (SONET) Measurements , 2017 .

[79]  Quintus Kleipool,et al.  Earth surface reflectance climatology from 3 years of OMI data , 2008 .

[80]  Jhoon Kim,et al.  Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals , 2017, Remote. Sens..

[81]  Jean-Noël Thépaut,et al.  The MACC reanalysis: an 8 yr data set of atmospheric composition , 2012 .

[82]  G. Carmichael,et al.  Diurnal variation of aerosol optical depth and PM 2.5 in South Korea: a synthesis from AERONET, satellite (GOCI), KORUS-AQ observation, and WRF-Chem model , 2018 .

[83]  Development of a numerical system to improve particulate matter forecasts , 2015 .

[84]  Brent N. Holben,et al.  Estimation of PM 10 concentrations over Seoul using multiple empirical models with AERONET and MODIS data collected during the DRAGON-Asia campaign , 2015 .

[85]  Chang-Hoi Ho,et al.  Earth and environmental remote sensing community in South Korea: A review , 2015 .

[86]  C. Long,et al.  Performance of the Ozone Mapping and Profiler Suite (OMPS) products , 2014 .

[87]  D. Zupanski,et al.  Impact of the OMI aerosol optical depth on analysis increments through coupled meteorology–aerosol data assimilation for an Asian dust storm , 2017 .

[88]  Joseph Frostad,et al.  Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. , 2016, Environmental science & technology.

[89]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[90]  John P. Burrows,et al.  GOME-2 observations of oxygenated VOCs: what can we learn from the ratio glyoxal to formaldehyde on a global scale? , 2010 .

[91]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[92]  Donny M. A. Aminou,et al.  Characteristics of the Meteosat Second Generation (MSG) radiometer/imager: SEVIRI , 1997, Remote Sensing.

[93]  Jhoon Kim,et al.  Introducing the geostationary environment monitoring spectrometer , 2018, Journal of Applied Remote Sensing.

[94]  Lieven Clarisse,et al.  Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder , 2009 .

[95]  Thomas F. Eck,et al.  GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign , 2015 .

[96]  J. Brion,et al.  Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence , 1995 .

[97]  Ukkyo Jeong,et al.  An optimal-estimation-based aerosol retrieval algorithm using OMI near-UV observations , 2016 .

[98]  Alexei Lyapustin,et al.  Earth Observations from DSCOVR/EPIC Instrument. , 2018, Bulletin of the American Meteorological Society.

[99]  Pinhua Xie,et al.  Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments , 2019, Atmospheric measurement techniques.

[100]  Yang Wang,et al.  Preflight Evaluation of the Performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by Spectral Analyses of Nitrogen Dioxide , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[101]  R. Setlow The wavelengths in sunlight effective in producing skin cancer: a theoretical analysis. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[102]  C. Münkel,et al.  AUTOMATIC MONITORING OF BOUNDARY LAYER STRUCTURES WITH CEILOMETER , 2010 .

[103]  R. Park,et al.  Estimation of ground-level particulate matter concentrations through the synergistic use of satellite observations and process-based models over South Korea , 2018, Atmospheric Chemistry and Physics.

[104]  A. Okuyama,et al.  An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites , 2016 .

[105]  Xiong Liu,et al.  Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval , 2015 .

[106]  K. Bowman,et al.  Balance of Emission and Dynamical Controls on Ozone During the Korea‐United States Air Quality Campaign From Multiconstituent Satellite Data Assimilation , 2019, Journal of geophysical research. Atmospheres : JGR.

[107]  W. Landman Climate change 2007: the physical science basis , 2010 .

[108]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[109]  T. Eck,et al.  Analysis of long-range transboundary transport (LRTT) effect on Korean aerosol pollution during the KORUS-AQ campaign , 2019, Atmospheric Environment.

[110]  Zhiqing Zhang,et al.  Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4 , 2017 .

[111]  Observation of Asian dust and air-pollution aerosols using a network of ground-based lidars (ADNet): Realtime data processing for validation/assimilation of chemical transport models , 2009 .

[112]  Thomas P. Kurosu,et al.  Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to temporal variation of the air mass factor in East Asia , 2017 .

[113]  Can Li,et al.  A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument , 2013 .

[114]  A. Bais,et al.  A new approach to correct for absorbing aerosols in OMI UV , 2009 .

[115]  Jihyo Chong,et al.  Long-term MAX-DOAS network observations of NO 2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations , 2014 .

[116]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[117]  Ruediger Lang,et al.  The multi-viewing multi-channel multi-polarisation imager – Overview of the 3MI polarimetric mission for aerosol and cloud characterization , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[118]  H. Akimoto,et al.  An Asian emission inventory of anthropogenic emission sources for the period 1980-2020 , 2007 .

[119]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[120]  James F. Gleason,et al.  A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments : applications to OMI , 2013 .

[121]  Misako Kachi,et al.  Global Change Observation Mission (GCOM) for Monitoring Carbon, Water Cycles, and Climate Change , 2010, Proceedings of the IEEE.

[122]  Jhoon Kim,et al.  The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density , 2017, Remote. Sens..

[123]  J. Lamarque,et al.  Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument , 2003 .

[124]  Lorraine A. Remer,et al.  Suomi‐NPP VIIRS aerosol algorithms and data products , 2013 .

[125]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[126]  Piet Stammes,et al.  Cloud pressure retrieval using the O2‐O2 absorption band at 477 nm , 2004 .

[127]  R. Martin,et al.  Space-based detection of missing sulfur dioxide sources of global air pollution , 2016 .

[128]  Eun-Ho Lee,et al.  한반도 에어로졸 라이다 네트워크(KALION)의 에어로졸 유형 구분 및 질량 농도 산출 알고리즘 , 2016 .

[129]  Michael J. Garay,et al.  Validation, comparison, and integration of GOCI, AHI, MODIS, MISR, and VIIRS aerosol optical depth over East Asia during the 2016 KORUS-AQ campaign , 2019, Atmospheric Measurement Techniques.

[130]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[131]  M. Caldwell,et al.  Chapter 4 – SOLAR UV IRRADIATION AND THE GROWTH AND DEVELOPMENT OF HIGHER PLANTS , 1971 .

[132]  U. Platt,et al.  Differential optical absorption spectroscopy (DOAS) , 1994 .

[133]  Mingxu Liu,et al.  Influence of aerosols and surface reflectance on satellite NO 2 retrieval: seasonal and spatial characteristics and implications for NO x emission constraints , 2015 .

[134]  L. G. Tilstra,et al.  The Ozone Monitoring Instrument: overview of 14 years in space , 2017 .

[135]  Ziauddin Ahmad,et al.  Spectral properties of backscattered UV radiation in cloudy atmospheres , 2004 .

[136]  Omar Torres,et al.  Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations , 2013 .

[137]  Dong-Joon Kim,et al.  Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5 , 2017, Asia-Pacific Journal of Atmospheric Sciences.

[138]  Jung-Hun Woo,et al.  Remote sensing evidence of decadal changes in major tropospheric ozone precursors over East Asia , 2017 .

[139]  Diego Loyola,et al.  Influence of cloud properties on satellite total ozone observations , 2011 .

[140]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[141]  Annmarie Eldering,et al.  Ozone air quality measurement requirements for a geostationary satellite mission , 2011 .

[142]  Stanford B. Hooker,et al.  An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series , 2004 .