Raman spectroscopy in heavy-mineral studies

Abstract Raman spectroscopy is an innovative tool with tremendous potential, serving as a fundamental complement to a variety of provenance methods including heavy-mineral analysis and detrital geochronology. Because of its accuracy, efficiency and versatility, the results of the Raman technique are indispensable for fully reliable identification of heavy minerals in grain mounts or thin sections. Thorny long-standing problems that cannot be solved confidently with a polarizing microscope alone, such as the determination of opaque and altered heavy minerals, of detrital grains as small as a few microns, or of colourless crystals with uncertain orientation and rounded morphology, can finally be addressed. Although the method can be highly automatized, the full ability and experience of the operator is required to combine Raman data with the optical information obtained under the microscope on the same grains, which is essential for the efficient application of the method in provenance studies. This article provides exemplary Raman spectra useful for the comparison and determination of over 70 different opaque and transparent heavy-mineral species commonly found in sediments, conveying specific information on the genesis of their source rocks, and thus is particularly useful in provenance diagnoses and palaeotectonic reconstructions. Supplementary material: Detailed information on the lasers used and the origin of the analysed minerals is available at http://www.geolsoc.org.uk/SUP18615.

[1]  M. Mange,et al.  Heavy Minerals in Colour , 1991 .

[2]  D. Neuville,et al.  Metamictization and chemical durability of detrital zircon , 2001 .

[3]  Z. Sharp,et al.  Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps , 2011 .

[4]  T. Wenzel,et al.  Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage , 2001 .

[5]  I-Ming Chou,et al.  Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates , 2006 .

[6]  David C. Smith The RAMANITA method for non-destructive and in situ semi-quantitative chemical analysis of mineral solid-solutions by multidimensional calibration of Raman wavenumber shifts. , 2005, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  B. Velde,et al.  Comparison of the raman microprobe spectra of (Mg, Fe)2SiO4 and Mg2GeO4 with olivine and spinel structures , 1986 .

[8]  E. Garzanti,et al.  Raman counting: a new method to determine provenance of silt , 2011 .

[9]  P. Dhamelincourt,et al.  Raman Microspectroscopic Study of the Cation Distribution in Amphiboles , 1988 .

[10]  T. Mernagh,et al.  Raman spectra from the Al2SiO5 polymorphs at high pressures and room temperature , 1991 .

[11]  B. A. Kolesov,et al.  Raman spectra of silicate garnets , 1998 .

[12]  T. Wenzel,et al.  Erratum to: Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage , 2001 .

[13]  O. Shebanova,et al.  Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum , 2003 .

[14]  C. Raman A new radiation , 1953 .

[15]  P. McMillan Raman Spectroscopy in Mineralogy and Geochemistry , 1989 .

[16]  A. Morton Heavy Minerals in Provenance Studies , 1985 .

[17]  Ronald Woods,et al.  Raman microprobe mineral identification , 2001 .

[18]  D. Bersani,et al.  Raman microspectroscopy: A non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses , 2007 .

[19]  R. Grieken,et al.  Characterisation of concentrates of heavy mineral sands by micro-Raman spectrometry and CC-SEM/EDX with HCA , 2007 .

[20]  Maria A. Mange,et al.  Heavy minerals in use , 2007 .

[21]  O. Beyssac,et al.  Application of Raman-based images in the Earth sciences , 2012 .

[22]  S. Palenik Chapter 37 Heavy Minerals in Forensic Science , 2007 .

[23]  W. Griffith Raman Spectroscopy of Minerals , 1969, Nature.

[24]  Harvey Blatt,et al.  Proportions of Exposed Igneous, Metamorphic, and Sedimentary Rocks , 1975 .

[25]  M. Sendova,et al.  Micro‐Raman spectroscopic study of pottery fragments from the Lapatsa tomb, Cyprus, ca 2500 BC , 2005 .

[26]  B. Jolliff,et al.  Raman spectroscopy of Fe-Ti-Cr-oxides, case study: Martian meteorite EETA79001 , 2004 .

[27]  Harvey Blatt Provenance Studies and Mudrocks , 1985 .

[28]  J. Rouzaud,et al.  Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study , 2002 .

[29]  C. Geiger Silicate garnet: A micro to macroscopic (re)view , 2008 .

[30]  R. Davies,et al.  Pressure‐induced incipient amorphization of α‐quartz and transition to coesite in an eclogite from Antarctica: a first record and some consequences , 2009 .

[31]  P. P. Lottici,et al.  ‘Green earths’: vibrational and elemental characterization of glauconites, celadonites and historical pigments , 2008 .

[32]  B. Jolliff,et al.  CHARACTERIZATION OF NATURAL FELDSPARS BY RAMAN SPECTROSCOPY FOR FUTURE PLANETARY EXPLORATION , 2008 .

[33]  L. Nasdala,et al.  Heterogeneous metamictization of zircon on a microscale , 1996 .

[34]  Danilo Bersani,et al.  Green pigments of the Pompeian artists' palette. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[35]  Danilo Bersani,et al.  Micro-Raman spectroscopy as a routine tool for garnet analysis. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[36]  Micro-Raman spectroscopy for the analysis of environmental particles , 2011 .

[37]  Harvey Blatt,et al.  Intrastratal solution and non-opaque heavy minerals in shales , 1969 .

[38]  Sanja Potgieter-Vermaak,et al.  Substrate selection for optimum qualitative and quantitative single atmospheric particles analysis using nano-manipulation, sequential thin-window electron probe X-ray microanalysis and micro-Raman spectrometry , 2006 .

[39]  R. Kaindl,et al.  Raman spectroscopy: Analytical perspectives in mineralogical research , 2004 .

[40]  Danilo Bersani,et al.  Raman spectroscopy as an effective tool for high-resolution heavy-mineral analysis: examples from major Himalayan and Alpine fluvio-deltaic systems. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[41]  S. Andò,et al.  Settling equivalence of detrital minerals and grain-size dependence of sediment composition , 2008 .

[42]  M. Malusà,et al.  Bias in detrital zircon geochronology and thermochronometry , 2013 .

[43]  M. Frezzotti,et al.  Raman spectroscopy for fluid inclusion analysis , 2012 .

[44]  Molecular and elemental characterisation of mineral particles by means of parallel micro-Raman spectrometry and Scanning Electron Microscopy/Energy Dispersive X-ray Analysis , 2006 .

[45]  T. Armbruster,et al.  Letters. Rock-forming moissanite (natural α-silicon carbide) , 2003 .

[46]  Luc Moens,et al.  A decade of Raman spectroscopy in art and archaeology. , 2007, Chemical reviews.

[47]  R. Korotev,et al.  Raman spectroscopy for mineral identification and quantification for in situ planetary surface analysis: A point count method , 1997 .

[48]  R. L. Moreira,et al.  Vibrational spectra of monazite-type rare-earth orthophosphates , 2006 .

[49]  A. Basu,et al.  Provenance Characteristics of Detrital Opaque Fe-Ti Oxide Minerals , 1989 .

[50]  A. Diego,et al.  Raman spectroscopy speciation of natural and anthropogenic solid phases in river and estuarine sediments with appreciable amount of clay and organic matter , 2008 .

[51]  B. Jolliff,et al.  Extracting olivine (Fo–Fa) compositions from Raman spectral peak positions , 2006 .

[52]  L. Burgio,et al.  Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[53]  M. Totten,et al.  Chapter 12 Heavy Minerals in Shales , 2007 .

[54]  P. Censi,et al.  Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh) , 2011 .

[55]  P. Censi,et al.  Mineralogical and chemical variability of fluvial sands. 1 Bedload sand (Ganga-Brahmaputra. Bangladesh). , 2010 .

[56]  Danilo Bersani,et al.  Applications of Raman spectroscopy to gemology , 2010, Analytical and bioanalytical chemistry.