On the Power of Parity Polynomial Time

This paper proves that the complexity class ⊕P, parity polynomial time [PZ83], contains the class of languages accepted by NP machines with few accepting paths. Indeed, ⊕P contains a broad class of languages accepted by path-restricted nondeterministic machines.

[1]  Jin-Yi Cai,et al.  Exact Counting is as Easy as Approximate Counting , 1986 .

[2]  Stathis Zachos,et al.  Probabilistic Quantifiers, Adversaries, and Complexity Classes: An Overview , 1986, SCT.

[3]  Juris Hartmanis,et al.  The Boolean Hierarchy I: Structural Properties , 1988, SIAM J. Comput..

[4]  Stuart A. Kurtz,et al.  Collapsing degrees , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[5]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[6]  Gerd Wechsung,et al.  On the Power of Probabilistic Polynomial Time:PNP[log] ⊆ PP , 1988 .

[7]  U. Schoning Probalisitic complexity classes and lowness , 1989 .

[8]  Eric Allender,et al.  The Complexity of Sparse Sets in P , 1986, SCT.

[9]  Roy Steven Rubinstein Structural complexity classes of sparse sets: intractability, data compression and printability , 1988 .

[10]  Ding-Zhu Du,et al.  A note on one-way functions and polynomial-time isomorphisms , 1986, STOC '86.

[11]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[12]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[13]  Timothy J. Long,et al.  Relativizing complexity classes with sparse oracles , 1986, JACM.

[14]  Juris Hartmanis,et al.  One-Way Functions, Robustness, and the Non-Isomorphism of NP-Complete Sets , 1987, Proceeding Structure in Complexity Theory.

[15]  Lane A. Hemachandra,et al.  Structure of Complexity Classes: Separations, Collapses, and Completeness , 1988 .

[16]  Clemens Lautemann,et al.  BPP and the Polynomial Hierarchy , 1983, Inf. Process. Lett..

[17]  L. Hemachandra,et al.  On Relativization and the Existence of Turing Complete Sets , 1989 .

[18]  Leslie G. Valiant,et al.  Relative Complexity of Checking and Evaluating , 1976, Inf. Process. Lett..

[19]  Stephen R. Mahaney Sparse Complete Sets of NP: Solution of a Conjecture of Berman and Hartmanis , 1982, J. Comput. Syst. Sci..

[20]  Deborah Joseph,et al.  Some Remarks on Witness Functions for Nonpolynomial and Noncomplete Sets in NP , 1985, Theor. Comput. Sci..

[21]  Juris Hartmanis,et al.  Complexity Classes without Machines: On Complete Languages for UP , 1988, Theor. Comput. Sci..

[22]  Gerd Wechsung,et al.  Counting classes with finite acceptance types , 1987 .

[23]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[24]  Yaacov Yesha,et al.  On Certain Polynomial-Time Truth-Table Reducibilities of Complete Sets to Sparse Sets , 1983, SIAM J. Comput..

[25]  Róbert Szelepcsényi The moethod of focing for nondeterministic automata , 1987, Bull. EATCS.

[26]  Andrew Chi-Chih Yao,et al.  Separating the Polynomial-Time Hierarchy by Oracles (Preliminary Version) , 1985, FOCS.

[27]  Andreas Blass,et al.  On the Unique Satisfiability Problem , 1982, Inf. Control..

[28]  C. Papadimitriou,et al.  Two remarks on the power of counting , 1983 .

[29]  Juris Hartmanis,et al.  The Boolean Hierarchy II: Applications , 1989, SIAM J. Comput..

[30]  László Babai,et al.  Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy , 1987, Inf. Process. Lett..

[31]  Esko Ukkonen Two Results on Polynomial Time Truth-Table Reductions to Sparse Sets , 1983, SIAM J. Comput..

[32]  Janos Simon,et al.  On the Difference Between One and Many (Preliminary Version) , 1977, ICALP.

[33]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[34]  Gerd Wechsung More about the closure of NP , 1988 .

[35]  Jin-Yi Cai,et al.  With probability one, a random oracle separates PSPACE from the polynomial-time hierarchy , 1986, STOC '86.

[36]  Jin-Yi Cai,et al.  Enumerative counting is hard , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[37]  Ian Parberry,et al.  On the Construction of Parallel Computers from Various Bases of Boolean Functions , 1986, Theor. Comput. Sci..

[38]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[39]  Uwe Schöning The power of counting , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[40]  R.E. Ladner,et al.  A Comparison of Polynomial Time Reducibilities , 1975, Theor. Comput. Sci..