Locally Weighted Learning

This paper surveys locally weighted learning, a form of lazy learning and memory-based learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning fit parameters, interference between old and new data, implementing locally weighted learning efficiently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.

[1]  B. Mandelbrot Documents in Mycenaean Greek, John Chadwick, Michael Ventris. Cambridge University Press (1956), 452, $15.00 , 1960 .

[2]  山口 楠雄,et al.  Pattern Recognition by Means of Automatic Analogue Apparatus , 1960 .

[3]  Karl Steinbuch,et al.  Learning Matrices and Their Applications , 1963, IEEE Trans. Electron. Comput..

[4]  Karl Steinbuch,et al.  Adaptive Systems in Pattern Recognition , 1963, IEEE Trans. Electron. Comput..

[5]  E. Nadaraya On Estimating Regression , 1964 .

[6]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[7]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[8]  I. K Crain,et al.  Treatment of non-equispaced two-dimensional data with a digital computer , 1967 .

[9]  C. Pelto,et al.  AUTOMATIC CONTOURING OF IRREGULARLY SPACED DATA , 1968 .

[10]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[11]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[12]  R. F. Walters Contouring by Machine: A User's Guide , 1969 .

[13]  G. D. Lodwick,et al.  A Technique for Automatic Contouring Field Survey Data , 1971, Australian Computer Journal.

[14]  Bruce G. Batchelor,et al.  Practical approach to pattern classification , 1974 .

[15]  D. H. McLain,et al.  Drawing Contours from Arbitrary Data Points , 1974, Comput. J..

[16]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[17]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[18]  Gilbert Saporta,et al.  Dépendance et codages de deux variables aléatoires , 1975 .

[19]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[20]  C. J. Stone,et al.  Consistent Nonparametric Regression , 1977 .

[21]  J. K. Benedetti On the Nonparametric Estimation of Regression Functions , 1977 .

[22]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[23]  P. Deheuvels Estimation non paramétrique de la densité par histogrammes généralisés , 1977 .

[24]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[25]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[26]  W. Hunt,et al.  Quality Assurance in Air Pollution Measurements: A Specialty Conference , 1979 .

[27]  Jon Louis Bentley,et al.  Data Structures for Range Searching , 1979, CSUR.

[28]  P. Lancaster Moving Weighted Least-Squares Methods , 1979 .

[29]  B. Sahney Polynomial and Spline Approximation , 1979 .

[30]  H. Müller,et al.  Kernel estimation of regression functions , 1979 .

[31]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[32]  K. Brodlie Mathematical Methods in Computer Graphics and Design , 1980 .

[33]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[34]  S. Weisberg Applied Linear Regression , 1981 .

[35]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[36]  C. J. Stone,et al.  Optimal Rates of Convergence for Nonparametric Estimators , 1980 .

[37]  B. Fischhoff,et al.  Journal of Experimental Psychology: Human Learning and Memory , 1980 .

[38]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[39]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[40]  John E. Dennis,et al.  An Adaptive Nonlinear Least-Squares Algorithm , 1977, TOMS.

[41]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .

[42]  John E. Dennis,et al.  Algorithm 573: NL2SOL—An Adaptive Nonlinear Least-Squares Algorithm [E4] , 1981, TOMS.

[43]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[44]  R. Rust,et al.  Distribution-Free Methods of Approximating Nonlinear Marketing Relationships , 1982 .

[45]  A. Walden,et al.  Identification of trends in annual maximum sea levels using robust locally weighted regression , 1983 .

[46]  J. Friedman A VARIABLE SPAN SMOOTHER , 1984 .

[47]  M. Lejeune Optimization in Non-Parametric Regression , 1984 .

[48]  Ker-Chau Li Consistency for Cross-Validated Nearest Neighbor Estimates in Nonparametric Regression , 1984 .

[49]  P. Cheng Strong consistency of nearest neighbor regression function estimators , 1984 .

[50]  H. Müller,et al.  Estimating regression functions and their derivatives by the kernel method , 1984 .

[51]  H. Müller,et al.  Kernels for Nonparametric Curve Estimation , 1985 .

[52]  Mike James,et al.  Classification Algorithms , 1986, Encyclopedia of Machine Learning and Data Mining.

[53]  T. Johnson,et al.  Quality assurance in air pollution measurements , 1985 .

[54]  W. Daniel Hillis,et al.  The connection machine , 1985 .

[55]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[56]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[57]  V. Gardiner,et al.  Water Demand Forecasting , 1986 .

[58]  P. Lancaster Curve and surface fitting , 1986 .

[59]  R. H. Myers Classical and modern regression with applications , 1986 .

[60]  Stanley M. Selkow,et al.  The Efficiency of Using k-d Trees for Finding Nearest Neighbors in Discrete Space , 1986, Inf. Process. Lett..

[61]  J. Mason,et al.  Algorithms for approximation , 1987 .

[62]  Paul E. Utgoff,et al.  Learning to control a dynamic physical system , 1987, Comput. Intell..

[63]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[64]  R. Farwig Multivariate interpolation of scattered data by moving least squares methods , 1987 .

[65]  H. Müller Weighted Local Regression and Kernel Methods for Nonparametric Curve Fitting , 1987 .

[66]  Craig Stanfill Memory-based Reasoning Applied to English Pronunciation , 1987, AAAI.

[67]  Filson H. Glanz,et al.  Application of a General Learning Algorithm to the Control of Robotic Manipulators , 1987 .

[68]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[69]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[70]  David L. Waltz,et al.  Applications of the Connection Machine , 1990, Computer.

[71]  Stephen M. Omohundro,et al.  Efficient Algorithms with Neural Network Behavior , 1987, Complex Syst..

[72]  K. Jabbour,et al.  ALFA: automated load forecasting assistant , 1988 .

[73]  J. Marron Automatic smoothing parameter selection: A survey , 1988 .

[74]  A. Ardeshir Goshtasby,et al.  Image registration by local approximation methods , 1988, Image Vis. Comput..

[75]  M. Braga,et al.  Exploratory Data Analysis , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[76]  Michael F. Shlesinger,et al.  Dynamic patterns in complex systems , 1988 .

[77]  Y. C. Lee,et al.  Evolution, Learning And Cognition , 1988 .

[78]  W. Cleveland,et al.  Regression by local fitting: Methods, properties, and computational algorithms , 1988 .

[79]  D. Medin,et al.  Context and structure in conceptual combination , 1988, Cognitive Psychology.

[80]  A. Solow Detecting Changes through Time in the Variance of a Long-Term Hemispheric Temperature Record: An Application of Robust Locally Weighted Regression , 1988 .

[81]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[82]  Robert J. Renka,et al.  Multivariate interpolation of large sets of scattered data , 1988, TOMS.

[83]  Barak A. Pearlmutter,et al.  Using a neural network to learn the dynamics of the CMU Direct-Drive Arm II , 1988 .

[84]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[85]  J. Raz,et al.  Analysis of repeated measurements using nonparametric smoothers and randomization tests. , 1989, Biometrics.

[86]  Christopher G. Atkeson,et al.  Using Local Models to Control Movement , 1989, NIPS.

[87]  David W. Aha,et al.  Incremental, Instance-Based Learning of Independent and Graded Concept Descriptions , 1989, ML.

[88]  B. Yandell Spline smoothing and nonparametric regression , 1989 .

[89]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[90]  James M. Nason,et al.  Nonparametric exchange rate prediction , 1990 .

[91]  David W. Aha,et al.  Noise-Tolerant Instance-Based Learning Algorithms , 1989, IJCAI.

[92]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[93]  David W. Aha,et al.  Instance‐based prediction of real‐valued attributes , 1989, Comput. Intell..

[94]  J. Raz,et al.  Estimation of trial-to-trial variation in evoked potential signals by smoothing across trials. , 1989, Psychophysiology.

[95]  David J. Reinkensmeyer,et al.  Using associative content-addressable memories to control robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[96]  J. Raz,et al.  Selecting the smoothing parameter for estimation of slowly changing evoked potential signals. , 1989, Biometrics.

[97]  V. Ramasubramanian,et al.  A generalized optimization of the K-d tree for fast nearest-neighbour search , 1989, Fourth IEEE Region 10 International Conference TENCON.

[98]  R. Nosofsky,et al.  Rules and exemplars in categorization, identification, and recognition. , 1989, Journal of experimental psychology. Learning, memory, and cognition.

[99]  George Wolberg,et al.  Digital image warping , 1990 .

[100]  David W. Aha,et al.  A study of instance-based algorithms for supervised learning tasks: mathematical, empirical, and psychological evaluations , 1990 .

[101]  W. Härdle Applied Nonparametric Regression , 1991 .

[102]  R. Meese,et al.  Nonlinear, Nonparametric, Nonessential Exchange Rate Estimation , 1990 .

[103]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[104]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[105]  Andrew W. Moore,et al.  Efficient memory-based learning for robot control , 1990 .

[106]  T. Næs,et al.  Locally weighted regression and scatter correction for near-infrared reflectance data , 1990 .

[107]  Stephen M. Omohundro,et al.  Bumptrees for Efficient Function, Constraint and Classification Learning , 1990, NIPS.

[108]  C. Chui,et al.  Approximation Theory VI , 1990 .

[109]  Alan J. Broder Strategies for efficient incremental nearest neighbor search , 1990, Pattern Recognit..

[110]  W. R. Schucany,et al.  Gaussian‐based kernels , 1990 .

[111]  Andrew W. Moore,et al.  Acquisition of Dynamic Control Knowledge for a Robotic Manipulator , 1990, ML.

[112]  Hiroaki Kitano,et al.  IXM2: A Parallel Associative Processor for Knowledge Processing , 1991, AAAI.

[113]  Alan J. Miller,et al.  Subset Selection in Regression , 1991 .

[114]  Donald F. Specht,et al.  A general regression neural network , 1991, IEEE Trans. Neural Networks.

[115]  David W. Aha,et al.  Incremental Constructive Induction: An Instance-Based Approach , 1991, ML.

[116]  Hiroaki Kitano,et al.  High Performance Natural Language Processing on Semantic Network Array Processor , 1991, IJCAI.

[117]  Hiroaki Kitano,et al.  High Performance Memory-Based Translation on IXM2 Massively Parallel Associative Memory Processor , 1991, AAAI.

[118]  Z. Zografski New methods of machine learning for the construction of integrated neuromorphic and associative-memory knowledge bases , 1991, [1991 Proceedings] 6th Mediterranean Electrotechnical Conference.

[119]  Terry Elliott,et al.  Instance-Based and Generalization-Based Learning Procedures Applied To Solving Integration Problems. , 1991 .

[120]  R. Meese,et al.  Nonparametric Estimation of Dynamic Hedonic Price Models and the Construction of Residential Housing Price Indices , 1991 .

[121]  Vladimir Vapnik,et al.  Principles of Risk Minimization for Learning Theory , 1991, NIPS.

[122]  Trevor Hastie,et al.  Statistical Models in S , 1991 .

[123]  Hiroaki Kitano,et al.  Massively Parallel Memory-Based Parsing , 1991, IJCAI.

[124]  W. Cleveland,et al.  Computational methods for local regression , 1991 .

[125]  Edwina L. Rissland,et al.  CABOT: An Adaptive Approach to Case-Based Search , 1991, IJCAI.

[126]  David W. Scott,et al.  Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.

[127]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[128]  A. Atkinson Subset Selection in Regression , 1992 .

[129]  Heinrich Müller,et al.  Spatial free-form deformation with scattered data interpolation methods , 1992, Comput. Graph..

[130]  Ian A. Cowe,et al.  Making light work : advances in near infrared spectroscopy : developed from the 4th International Conference on Near Infrared Spectroscopy, Aberdeen, Scotland, August 19-23, 1991 , 1992 .

[131]  Jianqing Fan,et al.  Variable Bandwidth and Local Linear Regression Smoothers , 1992 .

[132]  Nicholas R. Jennings,et al.  ECAI'92 --The 10th European Conference on Artificial Intelligence , 1992 .

[133]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[134]  N. Chater,et al.  Proceedings of the fourteenth annual conference of the cognitive science society , 1992 .

[135]  T. Næs,et al.  Locally Weighted Regression in Diffuse Near-Infrared Transmittance Spectroscopy , 1992 .

[136]  Z. Zografski Geometric and neuromorphic learning for nonlinear modeling, control and forecasting , 1992, Proceedings of the 1992 IEEE International Symposium on Intelligent Control.

[137]  Daniel N. Hill,et al.  An Empirical Investigation of Brute Force to choose Features, Smoothers and Function Approximators , 1992 .

[138]  Aram Karalic,et al.  Employing Linear Regression in Regression Tree Leaves , 1992, ECAI.

[139]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[140]  W. Härdle Applied Nonparametric Regression , 1992 .

[141]  B. LeBaron Forecast improvements using a volatility index , 1992 .

[142]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[143]  M. Lejeune,et al.  Smooth estimators of distribution and density functions , 1992 .

[144]  Eric Grosse,et al.  Seeing and Hearing Dynamic Loess Surfaces , 1992 .

[145]  Jeffrey S. Racine,et al.  An efficient cross-validation algorithm for window width selection for nonparametric kernel regression , 1993 .

[146]  V. Fedorov,et al.  Moving Local Regression: The Weight Function , 1993 .

[147]  W. Cleveland,et al.  ATS methods : nonparametric regression for non-Gaussian data , 1993 .

[148]  Jianqing Fan,et al.  Fast implementations of nonparametric curve estimators , 1993 .

[149]  Léon Bottou,et al.  Local Algorithms for Pattern Recognition and Dependencies Estimation , 1993, Neural Computation.

[150]  Donald F. Specht,et al.  The general regression neural network - Rediscovered , 1993, Neural Networks.

[151]  M. C. Jones,et al.  Comparison of Smoothing Parameterizations in Bivariate Kernel Density Estimation , 1993 .

[152]  Andrew W. Moore,et al.  Memory-Based Methods for Regression and Classification , 1993, NIPS.

[153]  Stephen M. Omohundro,et al.  Surface Learning with Applications to Lipreading , 1993, NIPS.

[154]  Stefan Schaal,et al.  Assessing the Quality of Learned Local Models , 1993, NIPS.

[155]  Halina Barańska,et al.  Making light work: Advances in near infrared spectroscopy , 1993 .

[156]  Hiroaki Kitano,et al.  Example-Based Machine Translation on Massively Parallel Processors , 1993, International Joint Conference on Artificial Intelligence.

[157]  Minoru Maruyama,et al.  Water Demand Forecasting by Memory Based Learning , 1993 .

[158]  S. Blyth Optimal Kernel Weights under a Power Criterion , 1993 .

[159]  Hiroaki Kitano,et al.  Challenges of massive parallelism , 1993, IJCAI 1993.

[160]  Hiroaki Kitano,et al.  A Comprehensive and Practical Model of Memory-Based Machine Translation , 1993, IJCAI.

[161]  T. Gasser,et al.  Locally Adaptive Bandwidth Choice for Kernel Regression Estimators , 1993 .

[162]  T. Hastie,et al.  Local Regression: Automatic Kernel Carpentry , 1993 .

[163]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[164]  D. Ruprecht,et al.  Free form deformation with scattered data interpolation methods , 1993 .

[165]  Stefan Wess,et al.  Using k-d Trees to Improve the Retrieval Step in Case-Based Reasoning , 1993, EWCBR.

[166]  J. Fan,et al.  [Local Regression: Automatic Kernel Carpentry]: Comment , 1993 .

[167]  Mary Czerwinski,et al.  COMPAQ QuickSource: Providing the Consumer with the Power of Artificial Intelligence , 1993, IAAI.

[168]  M. Yasunaga,et al.  Memory-based reasoning implemented by wafer scale integration , 1993, 1993 Proceedings Fifth Annual IEEE International Conference on Wafer Scale Integration.

[169]  Leemon C Baird,et al.  Reinforcement Learning With High-Dimensional, Continuous Actions , 1993 .

[170]  Jianqing Fan,et al.  On curve estimation by minimizing mean absolute deviation and its implications , 1994 .

[171]  T. Isaksson,et al.  New approach for distance measurement in locally weighted regression , 1994 .

[172]  W. Cleveland Coplots, nonparametric regression, and conditionally parametric fits , 1994 .

[173]  Z. Ge,et al.  Noninvasive Spectroscopy for Monitoring Cell Density in a Fermentation Process , 1994 .

[174]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[175]  P. van der Smagt,et al.  The locally linear nested network for robot manipulation , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[176]  Jianqing Fan,et al.  Censored Regression - Local Linear-approximations and Their Applications , 1994 .

[177]  Hidehiko Tanaka,et al.  An Optimal Weighting Criterion of Case Indexing for Both Numeric and Symbolic Attributes , 1994 .

[178]  T. Gasser,et al.  Fast Algorithms for Nonparametric Curve Estimation , 1994 .

[179]  Thomas H. Connolly,et al.  Comparison of Some Neural Network and Scattered Data Approximations: The Inverse Manipulator Kinematics Example , 1994, Neural Computation.

[180]  Jerome H. Friedman,et al.  Flexible Metric Nearest Neighbor Classification , 1994 .

[181]  David W. Aha,et al.  Towards a Better Understanding of Memory-based Reasoning Systems , 1994, ICML.

[182]  C. Loader Computing Nonparametric Function Estimates , 1994 .

[183]  D. Ruprecht,et al.  A Framework for Generalized Scattered Data Interpolation , 1994 .

[184]  Heinrich Müller,et al.  Deformed cross-dissolves for image interpolation in scientific visualization , 1994, Comput. Animat. Virtual Worlds.

[185]  .. M. Ting,et al.  EXPLORING A FRAMEWORK FOR INSTANCE BASEDLEARNING AND NAIVE BAYESIAN CLASSIFIERSK , 1994 .

[186]  David W. Aha,et al.  Learning to Catch: Applying Nearest Neighbor Algorithms to Dynamic Control Tasks , 1994 .

[187]  M. C. Jones,et al.  Versions of Kernel-Type Regression Estimators , 1994 .

[188]  Thomas G. Dietterich,et al.  A study of distance-based machine learning algorithms , 1994 .

[189]  Andrew W. Moore,et al.  Memory-based Stochastic Optimization , 1995, NIPS.

[190]  Bernd Fritzke Incremental Learning of Local Linear Mappings , 1995 .

[191]  ReasoningSimon,et al.  Towards a Framework for Memory-Based , 1995 .

[192]  Sebastian Thrun,et al.  Is Learning The n-th Thing Any Easier Than Learning The First? , 1995, NIPS.

[193]  Stefan Schaal,et al.  Memory-based neural networks for robot learning , 1995, Neurocomputing.

[194]  Andrew W. Moore,et al.  Multiresolution Instance-Based Learning , 1995, IJCAI.

[195]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[196]  Heinrich Müller,et al.  Image Warping with Scattered Data Interpolation Methods , 1995 .

[197]  Heinrich Müller,et al.  Image warping with scattered data interpolation , 1995, IEEE Computer Graphics and Applications.

[198]  Jianqing Fan,et al.  Adaptive Order Polynomial Fitting: Bandwidth Robustification and Bias Reduction , 1995 .

[199]  David G. Lowe,et al.  Similarity Metric Learning for a Variable-Kernel Classifier , 1995, Neural Computation.

[200]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[201]  Stefan Schaal,et al.  From Isolation to Cooperation: An Alternative View of a System of Experts , 1995, NIPS.

[202]  Jing Peng,et al.  Efficient Memory-Based Dynamic Programming , 1995, ICML.

[203]  B. Turlach,et al.  Fast Computation of Auxiliary Quantities in Local Polynomial Regression , 1995 .

[204]  Jianqing Fan,et al.  Data‐Driven Bandwidth Selection in Local Polynomial Fitting: Variable Bandwidth and Spatial Adaptation , 1995 .

[205]  Andrew McCallum,et al.  Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State , 1995, ICML.

[206]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[207]  S. Lawrence,et al.  Function Approximation with Neural Networks and Local Methods: Bias, Variance and Smoothness , 1996 .

[208]  Sebastian Thrun,et al.  Discovering Structure in Multiple Learning Tasks: The TC Algorithm , 1996, ICML.

[209]  W. Cleveland,et al.  Smoothing by Local Regression: Principles and Methods , 1996 .

[210]  Prasad Tadepalli,et al.  Scaling Up Average Reward Reinforcement Learning by Approximating the Domain Models and the Value Function , 1996, ICML.

[211]  Russell Greiner,et al.  Computational learning theory and natural learning systems , 1997 .

[212]  Peter L. Brooks,et al.  Visualizing data , 1997 .

[213]  S. Thorpe Localized versus distributed representations , 1998 .

[214]  Automatic Local Smoothing for Spectral Density Estimation , 1998 .

[215]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[216]  S. Antrobus Local learning. , 1998, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[217]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[218]  William H. Press,et al.  Numerical recipes in C , 2002 .

[219]  Karl Steinbuch,et al.  Die Lernmatrix , 2004, Kybernetik.

[220]  Andrew W. Moore,et al.  Locally Weighted Learning for Control , 1997, Artificial Intelligence Review.

[221]  Steven Salzberg,et al.  A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features , 2004, Machine Learning.

[222]  S. Salzberg,et al.  A weighted nearest neighbor algorithm for learning with symbolic features , 2004, Machine Learning.

[223]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[224]  Amos Storkey,et al.  Advances in Neural Information Processing Systems 20 , 2007 .

[225]  Robert F. Sproull,et al.  Refinements to nearest-neighbor searching ink-dimensional trees , 1991, Algorithmica.

[226]  S. Renzetti Water Demand Forecasting , 2005 .

[227]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[228]  V. A. Pimenov,et al.  Nonlinear Prediction of a Speech Signal , 2006 .

[229]  Fridman,et al.  An Algorithm for Nding Best Matches in Logarithmic Expected Time. Acm Transactions on Math , .