Grafting of Multiwalled Carbon Nanotubes with Chicken

Keratin, obtained from chicken feathers, was grafted on the surface of commercially available carbon nanotubes. The original procedure developed allows a covalent interaction between some specific chemical groups characteristic of the keratin, with some functional groups introduced on purpose on the surface of the nanotubes, as revealed by infrared and Raman spectroscopies, which also allowed to determine structural changes introduced during the process, such as crystallinity, which lead to changes in other properties, as well.

[1]  M. Terrones,et al.  Evaluating the characteristics of multiwall carbon nanotubes , 2011 .

[2]  Zhifeng Zhu,et al.  Graft polymerization of native chicken feathers for thermoplastic applications. , 2011, Journal of agricultural and food chemistry.

[3]  Jayachandran Venkatesan,et al.  Preparation and characterization of carbon nanotube-grafted-chitosan – Natural hydroxyapatite composite for bone tissue engineering , 2011 .

[4]  L. Stobiński,et al.  Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods , 2010 .

[5]  Lin Li,et al.  POLYMER NANOCOMPOSITES BASED ON FUNCTIONALIZED CARBON NANOTUBES , 2010 .

[6]  Y. Gun’ko,et al.  Recent Advances in Research on Carbon Nanotube–Polymer Composites , 2010, Advanced materials.

[7]  D. Tasis,et al.  Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties , 2010 .

[8]  Angel Rubio,et al.  The doping of carbon nanotubes with nitrogen and their potential applications , 2010 .

[9]  Enkeleda Dervishi,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2009 .

[10]  H. Heise,et al.  Characterisation of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite , 2009 .

[11]  A. Martínez-Hernández,et al.  Chemical modification of keratin biofibres by graft polymerisation of methyl methacrylate using redox initiation , 2008 .

[12]  C. Chen,et al.  Quantitative limitation of active site and characteristics of chemical oxidized well-aligned carbon nanotubes , 2008 .

[13]  Hao Yu,et al.  Kinetically Controlled Side-Wall Functionalization of Carbon Nanotubes by Nitric Acid Oxidation , 2008 .

[14]  A. Barth Infrared spectroscopy of proteins. , 2007, Biochimica et biophysica acta.

[15]  Y. Gogotsi,et al.  Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy , 2007 .

[16]  C. Hong,et al.  Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites , 2007 .

[17]  Ryne P. Raffaelle,et al.  Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy , 2007 .

[18]  R. Patel,et al.  Changes in the vibrational modes of carbon nanotubes induced by electron‐beam irradiation: resonance Raman spectroscopy , 2007 .

[19]  R. Sato-Berrú,et al.  Application of principal component analysis to discriminate the Raman spectra of functionalized multiwalled carbon nanotubes , 2006 .

[20]  J. Dentzer,et al.  A comparison between Raman spectroscopy and surface characterizations of multiwall carbon nanotubes , 2006 .

[21]  V. Popov Carbon Nanotubes: Properties and Applications , 2006 .

[22]  T. Belin,et al.  Characterization methods of carbon nanotubes : a review. , 2005 .

[23]  Serge Lefrant,et al.  A correlated method for quantifying mixed and dispersed carbon nanotubes: analysis of the Raman band intensities and evidence of wavenumber shift , 2005 .

[24]  Riichiro Saito,et al.  Raman spectroscopy of carbon nanotubes , 2005 .

[25]  Walter F. Schmidt,et al.  Polyethylene reinforced with keratin fibers obtained from chicken feathers , 2005 .

[26]  M. Dresselhaus,et al.  Determination of nanotubes properties by Raman spectroscopy , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[28]  A. Huczko,et al.  Studies of Multiwall Carbon Nanotubes Using Raman Spectroscopy and Atomic Force Microscopy , 2004 .

[29]  V. Castaño,et al.  Grafting of methyl methacrylate onto natural keratin , 2003 .

[30]  Christian Thomsen,et al.  Raman scattering in carbon nanotubes , 2003, SPIE Optics + Photonics.

[31]  Quan Qing,et al.  Effect of Chemical Oxidation on the Structure of Single-Walled Carbon Nanotubes , 2003 .

[32]  A. Barth,et al.  What vibrations tell about proteins , 2002, Quarterly Reviews of Biophysics.

[33]  F. Alvarez,et al.  Incorporation of nitrogen in carbon nanotubes , 2002 .

[34]  S. Sinnott,et al.  Carbon Nanotubes: Synthesis, Properties, and Applications , 2001 .

[35]  L. Kovács,et al.  OH− ions in Oxide Crystals , 2001 .

[36]  M. Dresselhaus,et al.  Phonons in carbon nanotubes , 2000 .

[37]  J. Feijen,et al.  Partially carboxymethylated feather keratins. 1. Properties in aqueous systems. , 2000, Journal of agricultural and food chemistry.

[38]  J. Pelton,et al.  Spectroscopic methods for analysis of protein secondary structure. , 2000, Analytical biochemistry.

[39]  A. Kulik,et al.  Mechanical properties of carbon nanotubes , 1999 .

[40]  Christian Thomsen,et al.  INFRARED ACTIVE PHONONS IN SINGLE-WALLED CARBON NANOTUBES , 1998 .

[41]  H. Edwards,et al.  FT-Raman spectroscopic study of keratotic materials: horn, hoof and tortoiseshell. , 1998, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[42]  J. Church,et al.  The photodegradation of wool keratin II. Proposed mechanisms involving cystine , 1997 .

[43]  J. Bandekar,et al.  Amide modes and protein conformation. , 1992, Biochimica et biophysica acta.

[44]  R. Fraser,et al.  Surface lattice in α-keratin filaments , 1988 .

[45]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[46]  R. Morent,et al.  Progress in polymer science: Edited by A. D. Jenkins Pergamon Press, Oxford, 1971, 303 pp. £8.50 , 1972 .

[47]  S. Krimm Infrared spectra and chain conformation of proteins. , 1962, Journal of molecular biology.

[48]  S. Krimm,et al.  Studies on the Structure of Feather Keratin: I. X-Ray Diffraction Studies and Other Experimental Data. , 1961, Biophysical journal.

[49]  A. Boczkowska,et al.  The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix , 2011 .

[50]  Helen Panayiotou,et al.  Vibrational spectroscopy of keratin fibres : A forensic approach , 2004 .

[51]  A. Barth,et al.  The infrared absorption of amino acid side chains. , 2000, Progress in biophysics and molecular biology.

[52]  L. Rintoul,et al.  Keratin orientation in wool and feathers by polarized raman spectroscopy. , 2000, Biopolymers.

[53]  H. Kataura,et al.  Resonance Raman Scattering of Multi-Walled Carbon Nanotubes , 1999 .

[54]  J. Church,et al.  Photodegradation of wool keratin: Part I. Vibrational spectroscopic studies , 1996 .

[55]  H. Mantsch,et al.  The use and misuse of FTIR spectroscopy in the determination of protein structure. , 1995, Critical reviews in biochemistry and molecular biology.

[56]  George E. P. Box,et al.  Estadística para investigadores: introducción al diseño de experimentos, análisis de datos y construcción de modelos , 1988 .