Tensor-based methods for system identification. Part 2: Three examples of tensor-based system identification methods

In this second part of the paper we present three examples for illustrating tensor-based system identification: 1) blind identification of SISO FIR linear systems and instantaneous MIMO linear mixtures; 2) supervised identification of homogeneous cubic Volterra systems; 3) supervised identification of Wiener-Hammerstein systems.

[1]  E. Powers,et al.  Identification of nonlinear channels in digital transmission systems , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[2]  S. Benedetto,et al.  Modeling and Performance Evaluation of Nonlinear Satellite Links-A Volterra Series Approach , 1979, IEEE Transactions on Aerospace and Electronic Systems.

[3]  Gérard Favier,et al.  Identification of PARAFAC-Volterra cubic models using an Alternating Recursive Least Squares algorithm , 2004, 2004 12th European Signal Processing Conference.

[4]  A.Y. Kibangou,et al.  Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients , 2006, IEEE Signal Processing Letters.

[5]  Gérard Favier,et al.  Identification de modèles de Volterra basée sur la décomposition PARAFAC de leurs noyaux et le filtre de Kalman étendu , 2006, Traitement du Signal.

[6]  Raviv Raich,et al.  Spectral Analysis of Polynomial Nonlinearity with Applications to RF Power Amplifiers , 2004, EURASIP J. Adv. Signal Process..

[7]  G. Favier,et al.  Matrix and tensor decompositions for identification of block-structured nonlinear channels in digital transmission systems , 2008, 2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications.

[8]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: LNL cascade models , 1986, Biological Cybernetics.

[9]  Keith R. Godfrey,et al.  Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED) , 2002, IEEE Trans. Instrum. Meas..

[10]  David Rees,et al.  Identification of nonlinear cascade systems using paired multisine signals , 1998, IEEE Trans. Instrum. Meas..

[11]  João Cesar M. Mota,et al.  Blind channel identification algorithms based on the Parafac decomposition of cumulant tensors: The single and multiuser cases , 2008, Signal Process..

[12]  Kamilo Feher Digital Communications: Satellite/Earth Station Engineering , 1982 .

[13]  Dimitrios Hatzinakos,et al.  Blind identification of linear subsystems of LTI-ZMNL-LTI models with cyclostationary inputs , 1997, IEEE Trans. Signal Process..

[14]  Edward J. Powers,et al.  Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs , 2001, IEEE Trans. Signal Process..

[15]  Winson Taam,et al.  Nonlinear System Analysis and Identification From Random Data , 1991 .

[16]  A. Kibangou,et al.  Tensor-based Identification of the Structure of Block-Oriented Nonlinear Systems , 2009 .

[17]  Gerd Vandersteen,et al.  Measurement and identification of nonlinear systems consisting of linear dynamic blocks and one static nonlinearity , 1999, IEEE Trans. Autom. Control..

[18]  R. Stein,et al.  Identification of intrinsic and reflex contributions to human ankle stiffness dynamics , 1997, IEEE Transactions on Biomedical Engineering.

[19]  A. Kibangou,et al.  Identification of fifth-order Volterra systems using i.i.d. inputs , 2010 .

[20]  R. Haber Structural identification of quadratic block-oriented models based on estimated Volterra kernels , 1989 .

[21]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .