Crocus sativus by-products as sources of bioactive extracts: Pharmacological and toxicological focus on anthers.

[1]  A. Zalacain,et al.  Saffron , 2018, FoodIntegrity Handbook.

[2]  M. Elyoubi,et al.  Determination of Antioxidant Properties of Six By-Products of Crocus sativus L. (Saffron) Plant Products , 2018 .

[3]  S. Carradori,et al.  Crocus sativus L. stigmas and byproducts: Qualitative fingerprint, antioxidant potentials and enzyme inhibitory activities. , 2018, Food research international.

[4]  M. Mangal,et al.  Pharmacognostical standardization and HPTLC fingerprinting analysis of Crocus sativus L. , 2018 .

[5]  M. Taniguchi,et al.  The antimicrobial and anti-endotoxic peptide AmyI-1-18 from rice α-amylase and its [N3L] analog promote angiogenesis and cell migration , 2018, Peptides.

[6]  S. Carradori,et al.  Graminex Pollen: Phenolic Pattern, Colorimetric Analysis and Protective Effects in Immortalized Prostate Cells (PC3) and Rat Prostate Challenged with LPS , 2018, Molecules.

[7]  S. Nazifi,et al.  The effect of saffron aqueous extract on oxidative stress parameters and important biochemical enzymes in the testis of streptozotocin-induced diabetic rats , 2018 .

[8]  R. Luján,et al.  Transcriptome analysis in tissue sectors with contrasting crocins accumulation provides novel insights into apocarotenoid biosynthesis and regulation during chromoplast biogenesis , 2018, Scientific Reports.

[9]  E. Novellino,et al.  Chemical characterization, antioxidant properties, anti-inflammatory activity, and enzyme inhibition of Ipomoea batatas L. leaf extracts , 2017 .

[10]  C. Delporte,et al.  The waste of saffron crop, a cheap source of bioactive compounds , 2017 .

[11]  Jianbo Xiao,et al.  Therapeutic Properties of Bioactive Compounds from Different Honeybee Products , 2017, Front. Pharmacol..

[12]  M. Vacca,et al.  Protective Effects Induced by Microwave‐Assisted Aqueous Harpagophytum Extract on Rat Cortex Synaptosomes Challenged with Amyloid β‐Peptide , 2017, Phytotherapy research : PTR.

[13]  M. Vacca,et al.  Optimization of Aqueous Extraction and Biological Activity of Harpagophytum procumbens Root on Ex Vivo Rat Colon Inflammatory Model , 2017, Phytotherapy research : PTR.

[14]  D. Tsikas Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. , 2017, Analytical biochemistry.

[15]  S. Shekarforoush,et al.  The Effects of Aqueous and Alcoholic Saffron (Crocus sativus) Tepal Extracts on Quality and Shelf-Life of Pacific White Shrimp (Litopeneous vannamei) During Iced Storage , 2016 .

[16]  Dorothy Yu Huang,et al.  Modeling and simulation for toxicity assessment. , 2016, Mathematical biosciences and engineering : MBE.

[17]  M. Vacca,et al.  An Hydroalcoholic Chamomile Extract Modulates Inflammatory and Immune Response in HT29 Cells and Isolated Rat Colon , 2016, Phytotherapy research : PTR.

[18]  A. Afolayan,et al.  Toxicity Assessment of Different Solvent Extracts of the Medicinal Plant, Phragmanthera capitata (Sprengel) Balle on Brine Shrimp (Artemia salina) , 2016 .

[19]  B. Lanza,et al.  Nutrients and Heavy Metals in Flowers and Corms of the Saffron Crocus (Crocus sativus L.) , 2016 .

[20]  C. Pizza,et al.  Antioxidant activity, cytotoxic activity and metabolic profiling of juices obtained from saffron (Crocus sativus L.) floral by-products. , 2016, Food chemistry.

[21]  M. A. Continenza,et al.  Petals of Crocus sativus L. as a potential source of the antioxidants crocin and kaempferol. , 2015, Fitoterapia.

[22]  P. Olczyk,et al.  Bee Pollen: Chemical Composition and Therapeutic Application , 2015, Evidence-based complementary and alternative medicine : eCAM.

[23]  M. Sahari,et al.  Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties , 2014, Food science & nutrition.

[24]  A. Sani,et al.  Chemical composition and nutritional value of saffron's pollen (Crocus sativus L.) , 2013 .

[25]  Jaykaran Charan,et al.  How to calculate sample size in animal studies? , 2013, Journal of pharmacology & pharmacotherapeutics.

[26]  G. Alonso,et al.  A contribution to nutritional studies on Crocus sativus flowers and their value as food , 2013 .

[27]  L. Mondello,et al.  Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. "berries" from Turkey: comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. , 2013, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[28]  Haisheng Lin,et al.  Pollenkitt wetting mechanism enables species-specific tunable pollen adhesion. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[29]  Azlina Abdul-Aziz,et al.  Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase , 2012, BMC Complementary and Alternative Medicine.

[30]  G. Alonso,et al.  Increasing the applications of Crocus sativus flowers as natural antioxidants. , 2012, Journal of food science.

[31]  Jihyeung Ju,et al.  Inhibitory effects of calcium against intestinal cancer in human colon cancer cells and ApcMin/+ mice , 2012, Nutrition research and practice.

[32]  G. Fontecchio,et al.  Anti-inflammatory properties of drugs from saffron crocus. , 2012, Anti-inflammatory & anti-allergy agents in medicinal chemistry.

[33]  C. Andry,et al.  On the dynamics of nitrite, nitrate and other biomarkers of nitric oxide production in inflammatory bowel disease. , 2010, Nitric oxide : biology and chemistry.

[34]  A. Termentzi,et al.  LC-DAD-MS (ESI+) Analysis and Antioxidant Capacity of Crocus sativus Petal Extracts , 2008, Planta medica.

[35]  M. Campos,et al.  Pollen composition and standardisation of analytical methods , 2008 .

[36]  M. Fenech Cytokinesis-block micronucleus cytome assay , 2007, Nature Protocols.

[37]  S. Akhondzadeh,et al.  Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. , 2006, Phytomedicine : international journal of phytotherapy and phytopharmacology.

[38]  L. Menghini,et al.  The Volatile Organic Compounds from Tepals and Anthers of Saffron Flowers (Crocus sativus L.) , 2006 .

[39]  M. Hesse,et al.  Pollenkitt – its composition, forms and functions , 2005 .

[40]  Tian-Shung Wu,et al.  Antityrosinase principles and constituents of the petals of Crocus sativus. , 2004, Journal of natural products.

[41]  H. Hosseinzadeh,et al.  Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice , 2002, BMC pharmacology.

[42]  B. Halliwell,et al.  Hydrogen Peroxide. Ubiquitous in Cell Culture and In vivo? , 2000, IUBMB life.

[43]  G. Chichiriccò Developmental stages of the pollen wall and tapetum in some Crocus species , 1999 .

[44]  A. Lourenço,et al.  Pollen nutrition in honey bees (Apis mellifera): impact on adult health , 2015, Apidologie.

[45]  F. Branca,et al.  Re-evaluation of saffron floral wastes: analysis of saffron flowers defatted hydro-alcoholic extracts. , 2010 .

[46]  Y. Rouphael,et al.  Evaluation of saffron (Crocus sativus L.) production in Italy : effects of the age of saffron fields and plant density. , 2009 .

[47]  G. Chichiriccò Megasporogenesis and Development of Embryo Sac in Crocus Sativus L. , 1987 .

[48]  G. Chichiriccò Karyotype and Meiotic Behaviour of the Triploid Crocus Sativus L. , 1984 .

[49]  Research Paper Mediators of Inflammation, 10, 69–73 (2001) , 2022 .