Solid-State Exergy Optimized Electric Aircraft Thermal and Fault Management

Future air vehicles will increasingly incorporate electrical powertrains that require very tight system level integration of power, propulsion, thermal, fault protection, and airframe technologies. This paper provides an overview of a new category of thermal energy conversion technology that can be used to enable a fully solid-state integrated thermal and fault management electric aircraft protection system, while synergistically managing and recycling both the low-grade waste heat from electrical components and the high-grade waste heat from engine components. This is achieved with exergy amplification of the powertrain waste-heat, a new class of fast flight-weight breakers, new class of long variable conductance heat pipe with multiple switchable condensers, new class of turbofan integrated heat exchangers and a gradient-based powertrain system optimizer.