Comparison of low‐latitude ion and neutral zonal drifts using DE 2 data

We have used data from the ion drift meter and the wind and temperature spectrometer on the DE 2 spacecraft to make statistical comparisons of the zonal ion and neutral drifts at dip latitudes (DLAT) in the ±35° range over all local times. Fourier analysis indicates that the superrotation and the diurnal components of both flows are strongly peaked at the dip equator, with the superrotation term becoming negative for |DLAT| ≥20°. One interesting feature is the presence of a period (2200-0500 solar local time) in the 300-400 km altitude region near the dip equator where the ion drift is more strongly eastward than the neutral flow. This would seem to indicate the presence of an electric field source of greater strength than the F region dynamo elsewhere along the geomagnetic field line. Model calculations indicate that a possible mechanism for this source lies in the vertical shear in the zonal neutral wind in the 100-200 km altitude region.

[1]  A. Hedin MSIS‐86 Thermospheric Model , 1987 .

[2]  R. Heelis,et al.  Ion drift meter for Dynamics Explorer , 1982 .

[3]  T. Terasawa,et al.  Anisotropy observation of diffuse ions (>30 keV/e) upstream of the Earth's bow shock , 1985 .

[4]  P. C. Kendall,et al.  Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds , 1974 .

[5]  Ronald F. Woodman,et al.  F region east‐west drifts at Jicamarca , 1981 .

[6]  J. Forbes The equatorial electrojet , 1981 .

[7]  D. T. Farley,et al.  Equatorial electric fields during magnetically disturbed conditions 1. The effect of the interplanetary magnetic field , 1979 .

[8]  R. Heelis,et al.  East-west ion drifts at mid-latitudes observed by Dynamics Explorer 2 , 1992 .

[9]  N. Spencer,et al.  The Earth's thermospheric superrotation from Dynamics Explorer 2 , 1984 .

[10]  J. Maurer,et al.  The Dynamics Explorer Wind and Temperature Spectrometer , 1981 .

[11]  R. E. Dickenson,et al.  The effect of displaced geomagnetic and geographic poles on the thermospheric neutral winds , 1974 .

[12]  R. Woodman East-west ionospheric drifts at the magnetic equator. , 1972 .

[13]  N. Maynard,et al.  Average low-latitude meridional electric fields from DE 2 during solar maximum , 1988 .

[14]  Dieter Bilitza,et al.  International reference ionosphere 1990 , 1992 .

[15]  Donald T. Farley,et al.  Equatorial F region zonal plasma drifts , 1985 .

[16]  L. H. Brace,et al.  Geomagnetic equatorial anomaly in zonal plasma flow , 1987 .

[17]  Robert A. Langel,et al.  The near‐Earth magnetic field at 1980 determined from Magsat data , 1985 .

[18]  G. Haerendel,et al.  Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow , 1992 .

[19]  Arthur D. Richmond,et al.  Low-latitude plasma drifts from a simulation of the global atmospheric dynamo , 1993 .

[20]  D. Anderson,et al.  Ionospheric conditions affecting the evolution of equatorial plasma depletions , 1983 .

[21]  Doreen M.C. Walker,et al.  Upper-atmosphere zonal winds from satellite orbit analysis: An update , 1988 .

[22]  J. D. Tarpley The ionospheric wind dynamo - II. Solar tides , 1970 .

[23]  William R. Coley,et al.  Low‐latitude zonal and vertical ion drifts seen by DE 2 , 1989 .

[24]  R. Roble,et al.  F-region neutral winds and temperatures at equatorial latitudes: Measured and predicted behaviour during geomagnetically quiet conditions , 1983 .

[25]  H. G. Mayr,et al.  Tidal decomposition of zonal neutral and ion flows in the earth's upper equatorial thermosphere , 1986 .